Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14606, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918546

RESUMEN

The aim of the present study, an attempt to shed light on the use of industrial-based wastes as alkali-activated binder (AAB) material is mainly. The present novel research work, the characterization of waste ferrochrome slag (FCS) and the performance of alkali-activated mortar consisting of fly ash (FA) were investigated. The characterization of used materials were carried out using advanced microstructural analysis techniques (XRF, XRD and SEM). A total of thirty two mortars are prepared using FCS (90-60%) and FA (10-40%) with 5 M, 10 M sodium hydroxide (NaOH), Na2SiO3/NaOH (SS/SH = 1 and 2) solution. All specimens were cured in an oven at 70 °C and 100 °C for 24 h. After oven curing, the geopolymer mortars were kept in the laboratory for 28 days and thermal and mechanical tests were applied to them. The A5 mixture (SS/SH = 1 with 10%FA, 90%FCS and 5 M NaOH) was found to be optimum in terms of thermal insulation properties, making it suitable for use in sustainable construction in terms of low energy cost through exterior insulation. The C8 mixture (SS/SH = 1 with 40%FA, 60% FCS and 10 M NaOH) was found to be optimum in terms of strength and durability, making it suitable for use in sustainable construction. As a result, in this study, an optimum mixture of waste FCS and FA was obtained and geopolymer building materials that provide thermal insulation and structural performance and are resistant to external influences were produced.

2.
Materials (Basel) ; 16(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37570073

RESUMEN

Calcined clays are interesting starting materials to be used as SCMs (supplementary cementitious materials) in cements or to be converted to geopolymers by activation with a high alkaline activator. The adjustment of the properties in the fresh state, especially regarding the consistency of these binders, is almost exclusively achieved by the addition of water, since commercially available superplasticizers seem to be ineffective in low-calcium geopolymer systems. The aim of this study was a systematic investigation of various PCE (polycarboxylate ester/ether) superplasticizers (methacrylate ester PCE: MPEG, isoprenol ether PCE: IPEG, methallyl ether PCE: HPEG) with respect to their stability in different alkaline activators (NaOH, KOH, sodium and potassium silicate solutions). The effectiveness of superplasticizers (SPs) in low-calcium geopolymer binders was verified by rheological tests. Size exclusion chromatography was used to investigate if structural degradation of the superplasticizers occurs. The investigated PCE superplasticizers showed a thickening effect in the low-calcium geopolymer system. Depending on the alkalinity of the activator solution, a degradation process was detected for all the PCEs investigated. The side chains of the PCEs are cleaved off the backbone by basic ester and ether hydrolysis. The highest degree of degradation was found in sodium and potassium silicate solutions. In alkaline hydroxide solutions, the degradation process increases with increasing alkalinity.

3.
Materials (Basel) ; 16(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37241497

RESUMEN

Sodium sulfate (Na2SO4) and sodium carbonate (Na2CO3) are weakly alkaline activators. Alkali-activated slag (AAS) cement prepared with them shows the special advantages of long setting time and low shrinkage, but it shows slow development of mechanical properties. In the paper, Na2SO4 and Na2CO3 were used as activators and compounded with reactive magnesium oxide (MgO) and calcium hydroxide (Ca(OH)2) to optimize the setting time and mechanical properties. The hydration products and microscopic morphology were also studied using XRD, SEM, and EDS. Furthermore, the production cost and environmental benefits were compared and analyzed. The results show that Ca(OH)2 is the main influencing factor for setting time. It reacts preferentially with Na2CO3 to form CaCO3, which makes AAS paste lose plasticity rapidly and shortens the setting time, and then produces strength. Na2SO4 and Na2CO3 are the main influencing factors for flexural and compressive strength, respectively. Suitably high content is beneficial to promote the development of mechanical strength. The interaction of Na2CO3 and Ca(OH)2 shows a great effect on the initial setting time. High content of reactive MgO can shorten the setting time and increase the mechanical strength at 28 days. There are more crystal phases in hydration products. Considering the setting time and mechanical properties, the composition of activators are: 7% Na2SO4, 4% Na2CO3, 3-5% Ca(OH)2, and 2-4% reactive MgO. Compared with ordinary Portland cement (OPC) and AAS cement activated by sodium hydroxide (NaOH, NH) and water glass (WG) with the same alkali equivalent, the production cost and energy consumption are greatly reduced. Compared with P·O 42.5 of OPC, CO2 emission is reduced by 78.1%. AAS cement activated by weakly alkaline activators shows excellent environmental and economic benefits and good mechanical properties.

4.
Polymers (Basel) ; 14(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35631819

RESUMEN

Fireproof inorganic coatings based on sodium silicate solution with intumescent additions were prepared and tested to assess their ability to limit the negative effect of a fire. The intumescent materials were obtained by the alkali activation of waste glass powder (obtained by the grinding of recycled soda-lime culet) and slag (waste resulting from the metallurgical industry). The replacement of talc (used as filler in paint formulation) with the intumescent materials obtained by the alkaline activation of waste glass powder (WGP), determined an increase in the intumescence coefficient (up to 65%) and decreased the activation temperature of this process. To evaluate these coatings' abilities to prevent or delay the temperature increase in metal structures, the paints were applied on steel plates and tested in direct contact with the flame of a butane burner for 60 min. The coatings prevented the increase in the steel substrate temperature over one considered critical (500°C) for steel mechanical properties; the combination of two coatings, with different intumescence activation temperatures, correlated with the increase in the coating's thickness, sensibly reduced the rate of temperature increase (up to 75%) in the steel substrate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA