Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Foods ; 12(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36981110

RESUMEN

Acute alcoholic liver disease can cause serious liver damage. This study reports on the hepatoprotective effect of albumin peptide fractions from corn germ meal (MW < 1 kDa) (APF4) on acute alcohol hepatic damage in mice. In the mice model, the results indicated that APF4 at a dose of 800 mg/kg/bw could markedly boost alcohol metabolism, which was shown in the reduced duration of the loss of the righting reflex; the reduced level of blood alcohol concentration (BAC), cytochrome P450 2E1 (CYP2E1), alanine aminotransferase (ALT), aminotransferase (AST), triglycerides (TG), and malondialdehyde (MDA) (p < 0.01); the enhanced activity of aldehyde dehydrogenase (ALDH); and the superoxide dismutase (SOD) and glutathione (GSH) levels being increased by up to 84.02% and 193.22% (p < 0.01) compared to the control group. The antioxidant capability and lipid peroxidation inhibition activity of APF4 may be responsible for its protective effect against liver damage induced by alcohol. The findings suggested that APF4 had the hepatoprotective property against liver damage induced by alcohol.

2.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-940142

RESUMEN

ObjectiveTo explore the pharmacodynamic effect of the water extract of Citri Grandis exocarpium (WEC) on mice with alcohol-induced acute liver injury and provide data support for the development of this medicinal for anti-alcoholism and liver protection. MethodThe main components of WEC were determined by high performance liquid chromatography (HPLC). Sixty Balb/c mice were randomized into 6 groups: control group (equal volume of 0.5% carboxymethyl cellulose sodium solution), model group (equal volume of 0.5% carboxymethyl cellulose sodium solution), low-, medium-, and high-dose WEC groups (0.5, 1.0, 2.0 g·kg-1), and Haiwang Jinzun tablet positive control group (2.0 g·kg-1). The administration lasted 14 days. One day before the end of the administration, mice were fasted for 12 h with free access to water. The mice, except the control group, were given 56° Chinese liquor (13 mL·kg-1). After 2 h, blood was taken from eyeballs and the liver was dissected and weighed. Automatic biochemical analyzer was employed to detect the expression of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alcohol dehydrogenase (ADH). The pathological changes of liver tissues were observed based on hematoxylin-eosin (HE) staining, and apoptosis of hepatocytes based on TUNEL/DAB staining. The expression of proteins related to apoptosis was detected by Western blot. ResultAccording to the HPLC fingerprint, the main components of WEC were rhoifolin and naringin. Compared with the control group, the model group showed increase in liver/body weight ratio (P<0.01) and the expression of ALT and AST (P<0.05, P<0.01), decrease in the expression of ADH (P<0.05), blurred structure of hepatic lobules, pathological changes of liver tissue, loose cytoplasm with edema, severe steatosis, rise of the TUNEL-positive rate (P<0.01), reduction in expression of Bcl-2 (P<0.01), and increase in Bax and Caspase-3 (P<0.01). Compared with the model group, medium-dose WEC lowered liver/body weight ratio (P<0.05). All doses of WEC depressed the activity of ALT and AST (P<0.05, P<0.01), up-regulated the expression of ADH (P<0.05), significantly improved the pathological features of alcohol-induced cytoplasmic porosity, edema, and steatosis, down-regulated the TUNEL-positive rate (P<0.05, P<0.01), enhanced the expression of Bcl-2 (P<0.05), and decreased Bax and Caspase-3 (P<0.01). ConclusionWEC regulates the expression of ALT, AST, and ADH and improves hepatic steatosis and hepatocyte apoptosis to fight against acute liver injury.

3.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-940174

RESUMEN

ObjectiveTo explore the pharmacodynamic effect of the water extract of Citri Grandis exocarpium (WEC) on mice with alcohol-induced acute liver injury and provide data support for the development of this medicinal for anti-alcoholism and liver protection. MethodThe main components of WEC were determined by high performance liquid chromatography (HPLC). Sixty Balb/c mice were randomized into 6 groups: control group (equal volume of 0.5% carboxymethyl cellulose sodium solution), model group (equal volume of 0.5% carboxymethyl cellulose sodium solution), low-, medium-, and high-dose WEC groups (0.5, 1.0, 2.0 g·kg-1), and Haiwang Jinzun tablet positive control group (2.0 g·kg-1). The administration lasted 14 days. One day before the end of the administration, mice were fasted for 12 h with free access to water. The mice, except the control group, were given 56° Chinese liquor (13 mL·kg-1). After 2 h, blood was taken from eyeballs and the liver was dissected and weighed. Automatic biochemical analyzer was employed to detect the expression of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alcohol dehydrogenase (ADH). The pathological changes of liver tissues were observed based on hematoxylin-eosin (HE) staining, and apoptosis of hepatocytes based on TUNEL/DAB staining. The expression of proteins related to apoptosis was detected by Western blot. ResultAccording to the HPLC fingerprint, the main components of WEC were rhoifolin and naringin. Compared with the control group, the model group showed increase in liver/body weight ratio (P<0.01) and the expression of ALT and AST (P<0.05, P<0.01), decrease in the expression of ADH (P<0.05), blurred structure of hepatic lobules, pathological changes of liver tissue, loose cytoplasm with edema, severe steatosis, rise of the TUNEL-positive rate (P<0.01), reduction in expression of Bcl-2 (P<0.01), and increase in Bax and Caspase-3 (P<0.01). Compared with the model group, medium-dose WEC lowered liver/body weight ratio (P<0.05). All doses of WEC depressed the activity of ALT and AST (P<0.05, P<0.01), up-regulated the expression of ADH (P<0.05), significantly improved the pathological features of alcohol-induced cytoplasmic porosity, edema, and steatosis, down-regulated the TUNEL-positive rate (P<0.05, P<0.01), enhanced the expression of Bcl-2 (P<0.05), and decreased Bax and Caspase-3 (P<0.01). ConclusionWEC regulates the expression of ALT, AST, and ADH and improves hepatic steatosis and hepatocyte apoptosis to fight against acute liver injury.

4.
Nutr Res ; 54: 80-92, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29914670

RESUMEN

Dietary supplementation of oats has been associated with reduced risk of cardiovascular disease, diabetes, and gastrointestinal disorders. The role of oat extract as prophylactic in treating acute liver injury is not thoroughly established. We, therefore, hypothesized that oat extract would exert protective effect against alcohol-induced acute liver injury in a mouse model. To test this hypothesis, male C57BL/6 mice were pretreated with phenolic-enriched ethyl acetate (EA) fraction of oats (prepared by fractionating aqueous ethanolic extract with solvents of increasing polarity) at dosages of 125 and 250 mg kg-1 d-1 for 12 consecutive days. Acute liver injury was induced by administering 5 doses of 50% ethanol intragastrically (10 g/kg body weight) to mice at an interval of 12 hours. The alcohol-induced liver injury was evaluated by measuring serum levels of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, antioxidant parameters, mitochondrial function, and histology of liver tissue. Our results demonstrated that pretreatment with EA fraction at 250 mg kg-1 d-1 significantly (P < .001 for aspartate aminotransferase, alanine aminotransferase, and thiobarbituric acid-reactive species and P < .01 for lactate dehydrogenase and nitrites) reduced the levels of liver injury markers and significantly (P < .001 for glutathione reductase and glutathione S-transferase; P < .01 for catalase, superoxide dismustase, and vitamin C; P < .05 for reduced glutathione and NAD(P)H quinone dehydrogenase 1) increased the levels of antioxidant defenses. Furthermore, EA-pretreated mice showed mechanistic inhibition of nuclear factor κB signaling pathway through decreased phosphorylation and degradation of IκBα. We conclude that phenolic-enriched EA fraction of oats has immense potential to serve as dietary intervention against alcohol-induced liver damage.


Asunto(s)
Antioxidantes/uso terapéutico , Avena/química , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Etanol/efectos adversos , Hígado/efectos de los fármacos , Fenoles/uso terapéutico , Fitoterapia , Alanina Transaminasa/sangre , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Aspartato Aminotransferasas/sangre , Catalasa/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Suplementos Dietéticos , Glutatión/metabolismo , L-Lactato Deshidrogenasa/sangre , Hígado/metabolismo , Ratones Endogámicos C57BL , Fenoles/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico
5.
Can J Physiol Pharmacol ; 96(4): 419-427, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29053935

RESUMEN

Alcohol, the most common cause for hepatic injury, may further deteriorate the hepatic tissue when left unattended. Capsaicin, the pungent principle of chilli peppers, possesses antioxidant and anti-inflammatory properties and is a proven dietary antioxidant in various ailments. However, its role in alcohol-induced hepatic injury is unclear. In this study, we investigated the effects of capsaicin on the hepatic tissue of mice treated with alcohol. Acute liver injury was induced in mice by oral gavage of 5 doses of 10 mL/kg of 50% ethyl alcohol at an interval of 12 h. The tissue antioxidant levels along with the mitochondrial functional parameters and matrix metalloproteinase levels were evaluated in the hepatic tissues of mice following alcohol challenge. The results showed that alcohol intake significantly attenuated the hepatic antioxidant levels and mitochondrial function. These changes were accompanied by enhanced serum hepatic injury markers and matrix metalloproteinases. However, capsaicin treatment (10 and 20 mg/kg, oral) throughout the experimental period caused a drastic improvement in the hepatic tissue of the alcohol-treated mice, reflected by the normalization of hepatic enzyme and protein levels along with restored histological alterations. These results indicate that capsaicin, as a dietary intervention, may prevent alcohol-induced acute liver injury.


Asunto(s)
Capsaicina/farmacología , Capsicum/química , Etanol/efectos adversos , Hígado/enzimología , Hígado/lesiones , Metaloproteinasas de la Matriz/metabolismo , Enfermedad Aguda , Animales , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Hemo-Oxigenasa 1/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Metaloproteinasas de la Matriz/sangre , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nitritos/metabolismo , Tamaño de los Órganos/efectos de los fármacos , Carbonilación Proteica/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Factor de Transcripción ReIA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA