Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros











Intervalo de año de publicación
1.
Stem Cell Res Ther ; 15(1): 197, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971774

RESUMEN

BACKGROUND: Traumatic Brain Injury (TBI) represents one of the main causes of brain damage in young people and the elderly population with a very high rate of psycho-physical disability and death. TBI is characterized by extensive cell death, tissue damage and neuro-inflammation with a symptomatology that varies depending on the severity of the trauma from memory loss to a state of irreversible coma and death. Recently, preclinical studies on mouse models have demonstrated that the post-traumatic adult Neural Stem/Progenitor cells response could represent an excellent model to shed light on the neuro-reparative role of adult neurogenesis following damage. The cyclin-dependent kinase inhibitor p21Waf1/Cip1 plays a pivotal role in modulating the quiescence/activation balance of adult Neural Stem Cells (aNSCs) and in restraining the proliferation progression of progenitor cells. Based on these considerations, the aim of this work is to evaluate how the conditional ablation of p21Waf1/Cip1 in the aNSCS can alter the adult hippocampal neurogenesis in physiological and post-traumatic conditions. METHODS: We designed a novel conditional p21Waf1/Cip1 knock-out mouse model, in which the deletion of p21Waf1/Cip1 (referred as p21) is temporally controlled and occurs in Nestin-positive aNSCs, following administration of Tamoxifen. This mouse model (referred as p21 cKO mice) was subjected to Controlled Cortical Impact to analyze how the deletion of p21 could influence the post-traumatic neurogenic response within the hippocampal niche. RESULTS: The data demonstrates that the conditional deletion of p21 in the aNSCs induces a strong increase in activation of aNSCs as well as proliferation and differentiation of neural progenitors in the adult dentate gyrus of the hippocampus, resulting in an enhancement of neurogenesis and the hippocampal-dependent working memory. However, following traumatic brain injury, the increased neurogenic response of aNSCs in p21 cKO mice leads to a fast depletion of the aNSCs pool, followed by declined neurogenesis and impaired hippocampal functionality. CONCLUSIONS: These data demonstrate for the first time a fundamental role of p21 in modulating the post-traumatic hippocampal neurogenic response, by the regulation of the proliferative and differentiative steps of aNSCs/progenitor populations after brain damage.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Hipocampo , Ratones Noqueados , Células-Madre Neurales , Neurogénesis , Animales , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Células-Madre Neurales/metabolismo , Ratones , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/genética , Hipocampo/metabolismo , Hipocampo/patología , Modelos Animales de Enfermedad , Masculino , Proliferación Celular , Ratones Endogámicos C57BL
2.
Neurobiol Dis ; 199: 106604, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002810

RESUMEN

Mitochondria are essential regulators of cellular energy metabolism and play a crucial role in the maintenance and function of neuronal cells. Studies in the last decade have highlighted the importance of mitochondrial dynamics and bioenergetics in adult neurogenesis, a process that significantly influences cognitive function and brain plasticity. In this review, we examine the mechanisms by which mitochondria regulate adult neurogenesis, focusing on the impact of mitochondrial function on the behavior of neural stem/progenitor cells and the maturation and plasticity of newborn neurons in the adult mouse hippocampus. In addition, we explore the link between mitochondrial dysfunction, adult hippocampal neurogenesis and genes associated with cognitive deficits in neurodevelopmental disorders. In particular, we provide insights into how alterations in the transcriptional regulator NR2F1 affect mitochondrial dynamics and may contribute to the pathophysiology of the emerging neurodevelopmental disorder Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS). Understanding how genes involved in embryonic and adult neurogenesis affect mitochondrial function in neurological diseases might open new directions for therapeutic interventions aimed at boosting mitochondrial function during postnatal life.


Asunto(s)
Hipocampo , Mitocondrias , Trastornos del Neurodesarrollo , Neurogénesis , Neurogénesis/fisiología , Animales , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Trastornos del Neurodesarrollo/fisiopatología , Hipocampo/metabolismo , Mitocondrias/metabolismo , Humanos , Células-Madre Neurales/metabolismo
3.
IBRO Neurosci Rep ; 16: 168-181, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39007086

RESUMEN

Adult hippocampal neurogenesis is a lifelong process that involves the integration of newborn neurons into the hippocampal network, and plays a role in cognitive function and the modulation of mood-related behavior. Here, we sought to address the impact of chemogenetic activation of adult hippocampal progenitors on distinct stages of progenitor development, including quiescent stem cell activation, progenitor turnover, differentiation and morphological maturation. We find that hM3Dq-DREADD-mediated activation of nestin-positive adult hippocampal progenitors recruits quiescent stem cells, enhances progenitor proliferation, increases doublecortin-positive newborn neuron number, accompanied by an acceleration of differentiation and morphological maturation, associated with increased dendritic complexity. Behavioral analysis indicated anxiolytic behavioral responses in transgenic mice subjected to chemogenetic activation of adult hippocampal progenitors at timepoints when newborn neurons are predicted to integrate into the mature hippocampal network. Furthermore, we noted an enhanced fear memory extinction on a contextual fear memory learning task in transgenic mice subjected to chemogenetic activation of adult hippocampal progenitors. Our findings indicate that hM3Dq-DREAD-mediated chemogenetic activation of adult hippocampal progenitors impacts distinct aspects of hippocampal neurogenesis, associated with the regulation of anxiety-like behavior and fear memory extinction.

4.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612470

RESUMEN

Studying the properties of neural stem progenitor cells (NSPCs) in a fish model will provide new information about the organization of neurogenic niches containing embryonic and adult neural stem cells, reflecting their development, origin cell lines and proliferative dynamics. Currently, the molecular signatures of these populations in homeostasis and repair in the vertebrate forebrain are being intensively studied. Outside the telencephalon, the regenerative plasticity of NSPCs and their biological significance have not yet been practically studied. The impressive capacity of juvenile salmon to regenerate brain suggests that most NSPCs are likely multipotent, as they are capable of replacing virtually all cell lineages lost during injury, including neuroepithelial cells, radial glia, oligodendrocytes, and neurons. However, the unique regenerative profile of individual cell phenotypes in the diverse niches of brain stem cells remains unclear. Various types of neuronal precursors, as previously shown, are contained in sufficient numbers in different parts of the brain in juvenile Pacific salmon. This review article aims to provide an update on NSPCs in the brain of common models of zebrafish and other fish species, including Pacific salmon, and the involvement of these cells in homeostatic brain growth as well as reparative processes during the postraumatic period. Additionally, new data are presented on the participation of astrocytic glia in the functioning of neural circuits and animal behavior. Thus, from a molecular aspect, zebrafish radial glia cells are seen to be similar to mammalian astrocytes, and can therefore also be referred to as astroglia. However, a question exists as to if zebrafish astroglia cells interact functionally with neurons, in a similar way to their mammalian counterparts. Future studies of this fish will complement those on rodents and provide important information about the cellular and physiological processes underlying astroglial function that modulate neural activity and behavior in animals.


Asunto(s)
Células-Madre Neurales , Pez Cebra , Animales , Neurogénesis , Neuronas , Prosencéfalo , Mamíferos
5.
Cells ; 12(23)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38067185

RESUMEN

Nuclear pore complexes (NPCs) are highly dynamic macromolecular protein structures that facilitate molecular exchange across the nuclear envelope. Aberrant NPC functioning has been implicated in neurodegeneration. The translocated promoter region (Tpr) is a critical scaffolding nucleoporin (Nup) of the nuclear basket, facing the interior of the NPC. However, the role of Tpr in adult neural stem/precursor cells (NSPCs) in Alzheimer's disease (AD) is unknown. Using super-resolution (SR) and electron microscopy, we defined the different subcellular localizations of Tpr and phospho-Tpr (P-Tpr) in NSPCs in vitro and in vivo. Elevated Tpr expression and reduced P-Tpr nuclear localization accompany NSPC differentiation along the neurogenic lineage. In 5xFAD mice, an animal model of AD, increased Tpr expression in DCX+ hippocampal neuroblasts precedes increased neurogenesis at an early stage, before the onset of amyloid-ß plaque formation. Whereas nuclear basket Tpr interacts with chromatin modifiers and NSPC-related transcription factors, P-Tpr interacts and co-localizes with cyclin-dependent kinase 1 (Cdk1) at the nuclear chromatin of NSPCs. In hippocampal NSPCs in a mouse model of AD, aberrant Tpr expression was correlated with altered NPC morphology and counts, and Tpr was aberrantly expressed in postmortem human brain samples from patients with AD. Thus, we propose that altered levels and subcellular localization of Tpr in CNS disease affect Tpr functionality, which in turn regulates the architecture and number of NSPC NPCs, possibly leading to aberrant neurogenesis.


Asunto(s)
Enfermedad de Alzheimer , Hipocampo , Células-Madre Neurales , Proteínas de Complejo Poro Nuclear , Proteínas Proto-Oncogénicas , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Cromatina/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Células-Madre Neurales/metabolismo , Membrana Nuclear/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo
6.
J Neurochem ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37984072

RESUMEN

Treatment with bexarotene, a selective retinoid X receptor (RXR) agonist, significantly improves behavioral dysfunctions in various neurodegenerative animal models. Additionally, it activates neurodevelopmental and plasticity pathways in the brains of adult mice. Our objective was to investigate the impact of RXR activation by bexarotene on adult neural stem cells (aNSC) and their cell lineages. To achieve this, we treated NSCs isolated from the subventricular zone (SVZ) of adult rat brains from the proliferative stage to the differentiated status. The results showed that bexarotene-treated aNSC exhibited increased BrdU incorporation, SOX2+ dividing cell pairs, and cell migration from neurospheres, revealing that the treatment promotes self-renewing proliferation and cell motility in SVZ-aNCS. Furthermore, bexarotene induced a cell fate shift characterized by a significant increase in GFAP+/S100B+ differentiated astrocytes, which uncovers the participation of activated-RXR in astrogenesis. In the neuronal lineage, the fate shift was counteracted by bexarotene-induced enhancement of NeuN+ nuclei together with neurite network outgrowth, indicating that the RXR agonist stimulates SVZ-aNCS neuronal differentiation at later stages. These findings establish new connections between RXR activation, astro- and neurogenesis in the adult brain, and contribute to the development of therapeutic strategies targeting nuclear receptors for neural repair.

7.
Cells ; 12(16)2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37626896

RESUMEN

Since Joseph Altman published his pioneering work demonstrating neurogenesis in the hippocampus of adult rats, the number of publications in this field increased exponentially. Today, we know that the adult hippocampus harbors a pool of adult neural stem cells (NSCs) that are the source of life-long neurogenesis and plasticity. The functions of these NSCs are regulated by extrinsic cues arising from neighboring cells and the systemic environment. However, this tight regulation is subject to imbalance with age, resulting in a decline in adult NSCs and neurogenesis, which contributes to the progressive deterioration of hippocampus-related cognitive functions. Despite extensive investigation, the mechanisms underlying this age-related decline in neurogenesis are only incompletely understood, but appear to include an increase in NSC quiescence, changes in differentiation patterns, and NSC exhaustion. In this review, we summarize recent work that has improved our knowledge of hippocampal NSC aging, focusing on NSC-intrinsic mechanisms as well as cellular and molecular changes in the niche and systemic environment that might be involved in the age-related decline in NSC functions. Additionally, we identify future directions that may advance our understanding of NSC aging and the concomitant loss of hippocampal neurogenesis and plasticity.


Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Animales , Ratas , Neurogénesis , Envejecimiento , Hipocampo
8.
Comput Struct Biotechnol J ; 21: 472-484, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36618986

RESUMEN

The adult hippocampal neurogenesis plays a vital role in the function of the central nervous system (CNS), including memory consolidation, cognitive flexibility, emotional function, and social behavior. The deficiency of adult neural stem cells (aNSCs) in maintaining the quiescence and entering cell cycle, self-renewal and differentiation capacity is detrimental to the functional integrity of neurons and cognition of the adult brain. Histone acetyltransferase (HAT) and histone deacetylase (HDAC) have been shown to modulate brain functionality and are important for embryonic neurogenesis via regulation of gene transcription. We showed previously that Trrap, an adapter for several HAT complexes, is required for Sp1 transcriptional control of the microtubule dynamics in neuronal cells. Here, we find that Trrap deletion compromises self-renewal and differentiation of aNSCs in mice and in cultures. We find that the acetylation status of lysine residues K16, K19, K703 and K639 all fail to overcome Trrap-deficiency-incurred instability of Sp1, indicating a scaffold role of Trrap. Interestingly, the deacetylation of Sp1 at K639 and K703 greatly increases Sp1 binding to the promoter of target genes, which antagonizes Trrap binding, and thereby elevates Sp1 activity. However, only deacetylated K639 is refractory to Trrap deficiency and corrects the differentiation defects of Trrap-deleted aNSCs. We demonstrate that the acetylation pattern at K639 by HATs dictates the role of Sp1 in the regulation of adult neurogenesis.

9.
Front Neurosci ; 16: 878875, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431774

RESUMEN

The majority of adult neural stem cells (aNSCs) are in a distinct metabolic state of reversible cell cycle exit also known as quiescence. The rate of aNSC activation determines the number of new neurons generated and directly influences the long-term maintenance of neurogenesis. Despite its relevance, it is still unclear how aNSC quiescence is regulated. Many factors contribute to this, like aNSC heterogeneity, the lack of reliable quiescence markers, the complexity of the neurogenic niches or the intricacy of the transcriptional and post-transcriptional mechanisms involved. In this perspective article I discuss possible solutions to these problems. But, first and foremost, I believe we require a model that goes beyond a simple transition toward activation. Instead, we must acknowledge the full complexity of aNSC states, which include not only activation but also differentiation and survival as behavioural outcomes. I propose a model where aNSCs dynamically transition through a cloud of highly interlinked cellular states driven by intrinsic and extrinsic cues. I also show how a new perspective enables us to integrate current results into a coherent framework leading to the formulation of new testable hypothesis. This model, like all others, is still far from perfect and will be reshaped by future findings. I believe that having a more complete view of aNSC transitions and embracing their complexity will bring us closer to understand how aNSC activity and neurogenesis are controlled throughout life.

10.
Front Cell Dev Biol ; 10: 822934, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300421

RESUMEN

The central nervous system has enormously complex cellular diversity with hundreds of distinct cell types, yet alternative splicing features in single cells of important cell types at neurogenic regions are not well understood. By employing in silico analysis, we systematically identified 3,611 alternative splicing events from 1,908 genes in 28 single-cell transcriptomic data of adult mouse ependymal and subependymal regions, and found that single-cell RNA-seq has the advantage in uncovering rare splicing isoforms compared to bulk RNA-seq at the population level. We uncovered that the simultaneous presence of multiple isoforms from the same gene in a single cell is prevalent, and quiescent stem cells, activated stem cells, and neuroblast cells exhibit high heterogeneity of splicing variants. Furthermore, we also demonstrated the existence of novel bicistronic transcripts in quiescent stem cells.

11.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163116

RESUMEN

In the brain of teleost fish, radial glial cells are the major type of astroglial cells. To answer the question as to how radial glia structures adapt to the continuous growth of the brain, which is characteristic of salmonids, it is necessary to study various types of cells (neuronal precursors, astroglial cells, and cells in a state of neuronal differentiation) in the major integrative centers of the salmon brain (telencephalon and tectum opticum), using rainbow trout, Oncorhynchus mykiss, as a model. A study of the distribution of several molecular markers in the telencephalon and tectum with the identification of neural stem/progenitor cells, neuroblasts, and radial glia was carried out on juvenile (three-year-old) O. mykiss. The presence of all of these cell types provides specific conditions for the adult neurogenesis processes in the trout telencephalon and tectum. The distribution of glutamine synthetase, a molecular marker of neural stem cells, in the trout telencephalon revealed a large population of radial glia (RG) corresponding to adult-type neural stem cells (NSCs). RG dominated the pallial region of the telencephalon, while, in the subpallial region, RG was found in the lateral and ventral zones. In the optic tectum, RG fibers were widespread and localized both in the marginal layer and in the periventricular gray layer. Doublecortin (DC) immunolabeling revealed a large population of neuroblasts formed in the postembryonic period, which is indicative of intense adult neurogenesis in the trout brain. The pallial and subpallial regions of the telencephalon contained numerous DC+ cells and their clusters. In the tectum, DC+ cells were found not only in the stratum griseum periventriculare (SGP) and longitudinal torus (TL) containing proliferating cells, but also in the layers containing differentiated neurons: the central gray layer, the periventricular gray and white layers, and the superficial white layer. A study of the localization patterns of vimentin and nestin in the trout telencephalon and tectum showed the presence of neuroepithelial neural stem cells (eNSCs) and ependymoglial cells in the periventricular matrix zones of the brain. The presence of vimentin and nestin in the functionally heterogeneous cell types of adult trout indicates new functional properties of these proteins and their heterogeneous involvement in intracellular motility and adult neurogenesis. Investigation into the later stages of neuronal development in various regions of the fish brain can substantially elucidate the major mechanisms of adult neurogenesis, but it can also contribute to understanding the patterns of formation of certain brain regions and the involvement of RG in the construction of the definite brain structure.


Asunto(s)
Biomarcadores/metabolismo , Células-Madre Neurales/citología , Neurogénesis , Neuronas/citología , Oncorhynchus mykiss/crecimiento & desarrollo , Colículos Superiores/citología , Telencéfalo/citología , Animales , Proliferación Celular , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Oncorhynchus mykiss/metabolismo , Colículos Superiores/metabolismo , Telencéfalo/metabolismo
12.
Vitam Horm ; 118: 1-33, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35180924

RESUMEN

Adult hippocampal neurogenesis is sensitive to perturbations in thyroid hormone signaling, with evidence supporting a key role for thyroid hormone and thyroid hormone receptors (TRs) in the regulation of postmitotic progenitor survival and neuronal differentiation. In this book chapter we summarize the current understanding of the effects of thyroid hormone signaling on adult hippocampal progenitor development, and also critically address the role of TRs in regulation of distinct aspects of stage-specific hippocampal progenitor progression. We highlight actions of thyroid hormone on thyroid hormone responsive target genes, and the implications for hippocampal progenitor regulation. Given the influence of thyroid hormone on both mitochondrial and lipid metabolism, we discuss a putative role for regulation of metabolism in the effects of thyroid hormone on adult hippocampal neurogenesis. Finally, we highlight specific ideas that require detailed experimental investigation, and the need for future studies to obtain a deeper mechanistic insight into the influence of thyroid hormone and TRs in the developmental progression of adult hippocampal progenitors.


Asunto(s)
Hipocampo , Neurogénesis , Humanos , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Glándula Tiroides/metabolismo , Hormonas Tiroideas/fisiología
13.
Cells ; 11(2)2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35053334

RESUMEN

The ventricular-subventricular zone (V-SVZ) is a postnatal germinal niche. It holds a large population of neural stem cells (NSCs) that generate neurons and oligodendrocytes for the olfactory bulb and (primarily) the corpus callosum, respectively. These NSCs are heterogeneous and generate different types of neurons depending on their location. Positional identity among NSCs is thought to be controlled in part by intrinsic pathways. However, extrinsic cell signaling through the secreted ligand Sonic hedgehog (Shh) is essential for neurogenesis in both the dorsal and ventral V-SVZ. Here we used a genetic approach to investigate the role of the transcription factors GLI2 and GLI3 in the proliferation and cell fate of dorsal and ventral V-SVZ NSCs. We find that while GLI3 is expressed in stem cell cultures from both dorsal and ventral V-SVZ, the repressor form of GLI3 is more abundant in dorsal V-SVZ. Despite this high dorsal expression and the requirement for other Shh pathway members, GLI3 loss affects the generation of ventrally-, but not dorsally-derived olfactory interneurons in vivo and does not affect trilineage differentiation in vitro. However, loss of GLI3 in the adult dorsal V-SVZ in vivo results in decreased numbers of OLIG2-expressing progeny, indicating a role in gliogenesis.


Asunto(s)
Células Madre Adultas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Proteína Gli3 con Dedos de Zinc/metabolismo , Células Madre Adultas/citología , Animales , Diferenciación Celular , Células Cultivadas , Interneuronas/metabolismo , Ventrículos Laterales/metabolismo , Ratones , Células-Madre Neurales/citología , Receptor Smoothened/metabolismo
14.
Nan Fang Yi Ke Da Xue Xue Bao ; 41(10): 1588-1592, 2021 Oct 20.
Artículo en Chino | MEDLINE | ID: mdl-34755677

RESUMEN

OBJECTIVE: To investigate the role of G-protein coupled receptor Smoothened (Smo) in regulating proliferation and migration of adult neural stem cells (ANSCs) and explore the underlying mechanism. METHODS: Cultured ANSCs were treated with purmorphamine (PM, an agonist of Smo) or cyclopamine (CPM, an inhibitor of Smo), and the changes in cell proliferation migration abilities were assessed using cell counting kit-8 (CCK8) assay and wound healing assay, respectively. The mRNA expressions of membrane receptor Patched 1 (Ptch1), Smo, glioma-associated oncogene homolog 1 (Gli1), axon guidance cue slit1 (Slit1) and brain-derived neurotrophic factor (BDNF) in the treated cells were detected using real-time quantitative PCR (RT-PCR). RESULTS: PM significantly promoted the proliferation (P < 0.01) and migration of ANSCs (P < 0.01), and up-regulated the mRNA expressions of Ptch1, Smo, Gli1, Slit1 and BDNF. Treatment with CPM significantly inhibited the proliferation and migration of ANSCs. CONCLUSION: Modulating Smo activity can positively regulate the proliferation and migration of ANSCs possibly by regulating the expressions of BDNF and Slit1.


Asunto(s)
Proteínas Hedgehog , Células-Madre Neurales , Receptor Smoothened , Animales , Proliferación Celular , Receptores Patched , Receptor Patched-1/genética , Ratas , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Receptor Smoothened/genética , Proteína con Dedos de Zinc GLI1/genética
15.
Cells ; 10(11)2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34831242

RESUMEN

The regulation of adult neural stem or progenitor cell (aNSC) proliferation and differentiation as an interplay of cell-intrinsic and local environmental cues remains in part unclear, impeding their role in putative regenerative therapies. aNSCs with all major properties of NSCs in vitro have been identified in a variety of brain regions beyond the classic neurogenic niches, including the caudal periventricular regions (PVRs) of the midbrain, though active neurogenesis is either limited or merely absent in these regions. To elucidate cell-intrinsic properties of aNSCs from various PVRs, we here examined the proliferation and early differentiation capacity of murine aNSCs from non-neurogenic midbrain PVRs (PVRMB) compared to aNSCs from the neurogenic ventricular-subventricular zone (PVRV-SVZ) 7 days after transplantation into the permissive pro-neurogenic niche of the dentate gyrus (DG) of the hippocampus in mice. An initial in vitro characterization of the transplants displayed very similar characteristics of both aNSC grafts after in vitro expansion with equal capacities of terminal differentiation into astrocytes and Tuj1+ neurons. Upon the allogenic transplantation of the respective aNSCs into the DG, PVRMB grafts showed a significantly lower graft survival and proliferative capacity compared to PVRV-SVZ transplants, whereby the latter are exclusively capable of generating new neurons. Although these differences might be-in part-related to the transplantation procedure and the short-term study design, our data strongly imply important cell-intrinsic differences between aNSCs from neurogenic compared to non-neurogenic PVRs with respect to their neurogenic potential and/or their sensitivity to neurogenic cues.


Asunto(s)
Células Madre Adultas/citología , Hipocampo/citología , Mesencéfalo/citología , Células-Madre Neurales/citología , Células-Madre Neurales/trasplante , Neurogénesis , Nicho de Células Madre , Animales , Diferenciación Celular , Proliferación Celular , Supervivencia de Injerto , Ratones Endogámicos C57BL , Ratones Transgénicos , Condicionamiento Físico Animal , Factores de Transcripción SOXB1/metabolismo
16.
Development ; 148(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34383894

RESUMEN

Neural stem cells (NSCs) are maintained in specific regions of the postnatal brain and contribute to its structural and functional plasticity. However, the long-term renewal potential of NSCs and their mode of division remain elusive. The use of advanced in vivo live imaging approaches may expand our knowledge of NSC physiology and provide new information for cell replacement therapies. In this Review, we discuss the in vivo imaging methods used to study NSC dynamics and recent live-imaging results with respect to specific intracellular pathways that allow NSCs to integrate and decode different micro-environmental signals. Lastly, we discuss future directions that may provide answers to unresolved questions regarding NSC physiology.


Asunto(s)
Células-Madre Neurales/fisiología , Animales , Encéfalo/fisiología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Humanos , Atención Posnatal/métodos , Transducción de Señal/fisiología
17.
Mol Biol Rep ; 48(2): 1311-1321, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33566222

RESUMEN

Neural stem cells (NSCs) are multipotent, self-renewable cells who are capable of differentiating into neurons, astrocytes, and oligodendrocytes. NSCs reside at the subventricular zone (SVZ) of the adult brain permanently to guarantee a lifelong neurogenesis during neural network plasticity or undesirable injuries. Although the specious inaccessibility of adult NSCs niche hampers their in vivo identification, researchers have been seeking ways to optimize adult NSCs isolation, expansion, and differentiation, in vitro. NSCs were isolated from rhesus monkey SVZ, expanded in vitro and then characterized for NSCs-specific markers expression by immunostaining, real-time PCR, flow cytometry, and cell differentiation assessments. Moreover, cell survival as well as self-renewal capacity were evaluated by TUNEL, Live/Dead and colony assays, respectively. In the next step, to validate SVZ-NSCs identity in other species, a similar protocol was applied to isolate NSCs from adult rat's SVZ as well. Our findings revealed that isolated SVZ-NSCs from both monkey and rat preserve proliferation capacity in at least nine passages as confirmed by Ki67 expression. Additionally, both SVZ-NSCs sources are capable of self-renewal in addition to NESTIN, SOX2, and GFAP expression. The mortality was measured meager with over 95% viability according to TUNEL and Live/Dead assay results. Eventually, the multipotency of SVZ-NSCs appraised authentic after their differentiation into neurons, astrocytes, and oligodendrocytes. In this study, we proposed a reliable method for SVZ-NSCs in vitro maintenance and identification, which, we believe is a promising cell source for therapeutic approach to recover neurological disorders and injuries condition.


Asunto(s)
Encéfalo/metabolismo , Diferenciación Celular/genética , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Células Madre Adultas/metabolismo , Animales , Astrocitos/metabolismo , Proliferación Celular/genética , Autorrenovación de las Células/genética , Haplorrinos/genética , Ventrículos Laterales/metabolismo , Neurogénesis/genética , Oligodendroglía/metabolismo , Ratas
18.
Mol Neurobiol ; 58(5): 1952-1962, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33411242

RESUMEN

Neurogenesis in the dentate gyrus (DG) of the adult hippocampus is actively involved in brain homeostasis. Thus, identification of novel regulators in adult neurogenesis could significantly contribute to new therapies. We have recently unraveled the regulatory role of NR5A2 (also known as LRH1), a druggable orphan nuclear receptor, in embryonic neurogenesis. However, its involvement in adult neurogenesis is still an open question. Here we show that NR5A2 is differentially expressed in the DG of the adult hippocampus with neurons exhibiting higher levels of expression than adult neural stem/progenitor cells (aNSCs), suggesting a correlation with neuronal differentiation. Notably, NR5A2 overexpression in ex vivo cultured aNSCs induces expression of Prox1, a critical regulator of adult hippocampal neurogenesis. In agreement, NR5A2 is sufficient to reduce proliferation, increase neuronal differentiation, and promote axon outgrowth. Moreover, depletion of NR5A2 in DG cells in vivo caused a decrease in the number of NeuN as well as Calbindin-positive neurons, indicating its necessity for the maintenance of neuronal identity. Our data propose a regulatory role of NR5A2 in neuronal differentiation and fate specification of adult hippocampal NSCs.


Asunto(s)
Hipocampo/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Animales , Calbindinas/metabolismo , Ciclo Celular/fisiología , Proliferación Celular/fisiología , Ratones
19.
Stem Cell Reports ; 16(1): 89-105, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33382977

RESUMEN

Adult neurogenesis is impaired in the hippocampus of patients with Alzheimer disease (AD) as well as AD models. However, it is far from clear how modulating adult neurogenesis affects AD neuropathology. We confirm that adult hippocampal neurogenesis is impaired in two AD models. Surprisingly, however, cognitive functions are improved in AD models after ablating adult neural stem cells (aNSCs). Ablation of aNSCs does not affect the levels of amyloid ß but restores the normal synaptic transmission in the dentate gyrus (DG) granule cells of AD models. Furthermore, calbindin depletion in the DG of AD mice is ameliorated after aNSC ablation, and knocking down calbindin abolishes the effects of aNSC ablation on synaptic and cognitive functions of AD mice. Together, our data suggest that cognitive functions of AD mice are improved after aNSC ablation, which is associated with the restoration of synaptic transmission in the DG granule cells with calbindin as an important mediator.


Asunto(s)
Enfermedad de Alzheimer/patología , Cognición/fisiología , Células-Madre Neurales/metabolismo , Transmisión Sináptica/fisiología , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Calbindinas/deficiencia , Calbindinas/genética , Giro Dentado/citología , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Ganciclovir/farmacología , Humanos , Aprendizaje por Laberinto , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Presenilina-1/genética , Presenilina-1/metabolismo
20.
Neuron ; 108(2): 349-366.e6, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-32877641

RESUMEN

Neural stem cells (NSCs) in the dentate gyrus (DG) reside in a specialized local niche that supports their neurogenic proliferation to produce adult-born neurons throughout life. How local niche cells interact at the circuit level to ensure continuous neurogenesis from NSCs remains unknown. Here we report the role of endogenous neuropeptide cholecystokinin (CCK), released from dentate CCK interneurons, in regulating neurogenic niche cells and NSCs. Specifically, stimulating CCK release supports neurogenic proliferation of NSCs through a dominant astrocyte-mediated glutamatergic signaling cascade. In contrast, reducing dentate CCK induces reactive astrocytes, which correlates with decreased neurogenic proliferation of NSCs and upregulation of genes involved in immune processes. Our findings provide novel circuit-based information on how CCK acts on local astrocytes to regulate the key behavior of adult NSCs.


Asunto(s)
Astrocitos/fisiología , Colecistoquinina/fisiología , Giro Dentado/fisiología , Interneuronas/fisiología , Células-Madre Neurales/fisiología , Neurogénesis , Neuropéptidos/fisiología , Animales , Femenino , Masculino , Potenciales de la Membrana , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA