RESUMEN
Gallibacterium anatis is a member of the Pasteurellaceae family and is an opportunistic pathogen that causes gallibacteriosis in chickens. Stress plays a relevant role in promoting the development of pathogenicity in G. anatis. Epinephrine (E) and norepinephrine (NE) are relevant to stress; however, their effects on G. anatis have not been elucidated. In this work, we evaluated the effects of E and NE on the growth, biofilm formation, expression of adhesins, and proteases of two G. anatis strains, namely, the hemolytic 12656-12 and the nonhemolytic F149T biovars. E (10 µM/mL) and NE (30 and 50 µM/mL) increased the growth of G. anatis 12656-12 by 20 % and 25 %, respectively. E did not affect the growth of F149T, whereas 40 µM/mL NE decreased bacterial growth by 25 %. E and NE at a dose of 30-50 µM/mL upregulated five fibrinogen adhesins in the 12565-12 strain, whereas no effect was observed in the F149T strain. NE increased proteolytic activity in both strains, whereas E diminished proteolytic activity in the 12656-12 strain. E and NE reduced biofilm formation (30 %) and increased Congo red binding (15 %) in both strains. QseBC is the E and NE two-component detection system most common in bacteria. The qseC gene, which is the E and NE receptor in bacteria, was identified in the genomic DNA of the 12565-12 and F149TG. anatis strains via PCR amplification. Our results suggest that QseC can detect host changes in E and NE concentrations and that catecholamines can modulate the expression of several virulence factors in G. anatis.
Asunto(s)
Biopelículas , Pollos , Epinefrina , Regulación Bacteriana de la Expresión Génica , Norepinefrina , Pasteurellaceae , Factores de Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Norepinefrina/farmacología , Norepinefrina/metabolismo , Epinefrina/farmacología , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Pasteurellaceae/genética , Pasteurellaceae/patogenicidad , Pasteurellaceae/efectos de los fármacos , Pasteurellaceae/metabolismo , Animales , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/genética , Enfermedades de las Aves de Corral/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones por Pasteurellaceae/microbiología , Infecciones por Pasteurellaceae/veterinariaRESUMEN
Sporothrix schenckii is one of the etiological agents of sporotrichosis, a cutaneous and subcutaneous infection distributed worldwide. Like other medically relevant fungi, its cell wall is a molecular scaffold to display virulence factors, such as protective pigments, hydrolytic enzymes, and adhesins. Cell wall proteins with adhesive properties have been previously reported, but only a handful of them have been identified and characterized. One of them is Gp70, an abundant cell wall protein mainly found on the surface of yeast-like cells. Since the protein also has a role in the activity of 3-carboxy-cis,cis-muconate cyclase and its abundance is low in highly virulent strains, its role in the Sporothrix-host interaction remains unclear. Here, a set of GP70-silenced strains was generated, and the molecular and phenotypical characterization was performed. The results showed that mutants with high silencing levels showed a significant reduction in the adhesion to laminin and fibrinogen, enzyme activity, and defects in the cell wall composition, which included reduced mannose, rhamnose, and protein content, accompanied by an increment in ß-1,3-glucans levels. The cell wall N-linked glycan content was significantly reduced. These strains induced poor TNFα and IL-6 levels when interacting with human peripheral blood mononuclear cells in a dectin-1-, TLR2-, and TLR4-dependent stimulation. The IL-1ß and IL-10 levels were significantly higher and were stimulated via dectin-1. Phagocytosis and stimulation of neutrophil extracellular traps by human granulocytes were increased in highly GP70-silenced strains. Furthermore, these mutants showed virulence attenuation in the invertebrate model Galleria mellonella. Our results demonstrate that Gp70 is a versatile protein with adhesin properties, is responsible for the activity of 3-carboxy-cis,cis-muconate cyclase, and is relevant for the S. schenckii-host interaction.
RESUMEN
The genus Paracoccidioides includes Paracoccidioides lutzii and the Paracoccidioides brasiliensis complex, which comprises four phylogenetic species. A key feature distinguishing planktonic growth from biofilm is the presence of a 3D extracellular matrix (ECM). Therefore, in this study, we analyzed biofilm formation in different species of Paracoccidioides yeast phase, characterized the structural elements of the matrix of P. brasiliensis (Pb18), P. lutzii (Pl01 and 8334) and P. restrepiensis (339 and 192) and evaluated the expression of glucan genes, according to the stage of biofilm evolution for P. brasiliensis. The strains were cultivated in planktonic and biofilm form for 24-144 h. The fungi biomass and metabolic activity were determined by crystal violet and tetrazolium salt reduction (XTT) tests and colony-forming unit (CFU) by plating. The biofilm structure was designed using scanning electron microscopy and confocal laser scanning microscopy techniques. The extracellular matrix of P. brasiliensis and P. lutzii biofilms was extracted by sonication, and polysaccharides, proteins, and extracellular DNA (eDNA) were quantified. The RNA was extracted with the Trizol® reagent and quantified; then, the cDNA was synthesized to analyze the enolase expression, 14-3-3, FKS1, AGS1, GEL3, and KRE6 genes by real-time PCR. All strains of Paracoccidioides studied form a biofilm with more significant metabolic activity and biomass values in 144 h. The extracellular matrix of P. brasiliensis and P. lutzii had a higher content of polysaccharides in their composition, followed by proteins and eDNA in smaller quantities. The P. brasiliensis biofilm kinetics of formation showed greater expression of genes related to glucan's synthesis and its delivery to the external environment in addition adhesins during the biofilm's adhesion, initiation, and maturation. The GEL3 and enolase genes increased in expression within 24 h and during the biofilm maturation period, there was an increase in 14-3-3, AGS1, and FKS1. Furthermore, at 144 h, there was a decrease in KRE6 expression and an increase in GEL3. This study highlights the potential for biofilm formation for three species of Paracoccidioides and the main components of the extracellular matrix that can contribute to a better understanding of biofilm organization.
RESUMEN
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidioides spp. The interaction mediated by the presence of adhesins on the fungal surface and receptors in the extracellular matrix of the host, as well as the biofilm formation, is essential in its pathogenesis. Adhesins such as gp43, enolase, GAPDH (glyceraldehyde-3-phosphate dehydrogenase), and 14-3-3 have been demonstrated in the Paracoccidioides brasiliensis (Pb18) strain and recognized as necessary in the fungus-host interaction. The Pb 18 strain silenced to 14-3-3 showed changes in morphology, virulence, and adhesion capacity. The study aimed to evaluate the role of adhesin 14-3-3 in P. brasiliensis biofilm formation and the differential expression of genes related to adhesins, comparing planktonic and biofilm forms. The presence of biofilm was also verified in sutures in vitro and in vivo. The silenced strain (Pb14-3-3 aRNA) was compared with the wild type Pb18, determining the differential metabolic activity between the strains by the XTT reduction assay; the biomass by violet crystal and the polysaccharides by safranin, even as morphological differences by microscopic techniques. Differential gene expression for adhesins was also analyzed, comparing the relative expression of these in planktonic and biofilm forms at different times. The results suggested that the silencing of 14-3-3 protein altered the ability to form biofilm and its metabolism. The quantity of biomass was similar in both strains; however, the formation of exopolymeric substances and polysaccharide material was lower in the silenced strain. Our results showed increased expression of enolase, GAPDH, and 14-3-3 genes in the first periods of biofilm formation in the Pb18 strain. In contrast, the silenced strain showed a lower expression of these genes, indicating that gene silencing can influence the expression of other genes and be involved in the biofilm formation of P. brasiliensis. In vitro and in vivo assays using sutures confirmed this yeast's ability to form biofilm and may be implicated in the pathogenesis of paracoccidioidomycosis.
Asunto(s)
Paracoccidioides , Paracoccidioidomicosis , Paracoccidioides/genética , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas , Biopelículas , Adhesinas Bacterianas/metabolismo , Fosfopiruvato Hidratasa/genéticaRESUMEN
Se determinó la presencia de los genotipos de virulencia de Helicobacter pylori y su asociación con las lesiones precursoras de malignidad gástrica y parámetros histológicos en pacientes con síntomas de dispepsia del suroccidente de Colombia. Se realizó reacción en cadena de polimerasa (PCR) para la caracterización genética de vacA, cagA, babA2 y sabA. Se empleó la prueba de chi cuadrado o Fischer para evaluar la asociación de cada genotipo sobre el desenlace clínico. En los pacientes con lesiones precursoras de malignidad gástrica se encontró que el 86,3% presentaron el genotipo vacA s1/m1, el 68,1% cagA+ y los genotipos babA2+ y sabA+ con el 68,8% y 55,8%, respectivamente. También, se demostró la asociación entre los genotipos de virulencia y el grado severo de infiltración de células polimorfonucleares. Además, se encontró una asociación entre la combinación de los genes vacA/cagA, vacA/sabA y babA2/sabA. Este estudio proporciona evidencia acerca de la asociación de los genotipos de virulencia del H. pylori y la inflamación gástrica en pacientes infectados.
The aim of this research was to determine the presence of Helicobacter pylori virulence genotypes and their association with precursor lesions of gastric malignancy and histological parameters in patients with dyspepsia symptoms in southwestern Colombia. Polymerase chain reaction (PCR) was used for the genetic characterization of vacA, cagA, babA2 and sabA. The chi-square or Fischer test were used to evaluate the association between each genotype and the clinical outcome. We found that 86.3% of the patients with precursor lesions of gastric malignancy presented the vacA s1/m1 genotype, 68.1% had the cagA+ genotype and 68.8% and 55.8% had the babA2+ and sabA+ genotypes, respectively. Our results show association between virulence genotypes and severe degree of polymorphonuclear cell infiltration. In addition, we found an association between the combination of vacA/cagA, vacA/sabA and babA2/sabA genes. This study provides evidence about the association of H. pylori virulence genotypes and gastric inflammation in infected patients.
Asunto(s)
Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Distribución de Chi-Cuadrado , Adhesinas Bacterianas , Gastritis , Factores de Virulencia , InflamaciónRESUMEN
Actinobacillus seminis is the causal agent of epididymitis and has other effects on the reproductive tracts of small ruminants and bovines. This bacterium causes infection when luteinizing (LH) or follicle-stimulating hormones increase, and hosts reach sexual maturity. LH induces female ovulation and male testosterone production, suggesting that these hormones affect A. seminis pathogenicity. In the present study, we evaluated the effect of testosterone (1-5 ng/ml) or estradiol (5-25 pg/ml) added to culture medium on the in vitro growth, biofilm production, and adhesin expression of A. seminis. Estradiol does not promote the growth of this bacterium, whereas testosterone increased A. seminis planktonic growth 2-fold. Both hormones induced the expression of the elongation factor thermo unstable (EF-Tu) and phosphoglycerate mutase (PGM), proteins that A. seminis uses as adhesins. Estradiol (5 or 10 pg/ml) decreased biofilm formation by 32%, whereas testosterone, even at 5 ng/ml, showed no effect. Both hormones modified the concentrations of carbohydrates and eDNA in biofilms by 50%. Amyloid proteins are characterized by their capacity to bind Congo red (CR) dye. Actinobacillus seminis binds CR dye, and this binding increases in the presence of 5-20 pg/ml estradiol or 4 ng/ml testosterone. The A. seminis EF-Tu protein was identified as amyloid-like protein (ALP). The effect of sexual hormones on the growth and expression of virulence factors of A. seminis seems to be relevant for its colonization and permanence in the host.
Asunto(s)
Infecciones por Actinobacillus , Actinobacillus seminis , Femenino , Masculino , Animales , Bovinos , Actinobacillus seminis/genética , Estradiol/farmacología , Infecciones por Actinobacillus/microbiología , Testosterona/farmacología , Factor Tu de Elongación Peptídica , Adhesinas Bacterianas/genética , BiopelículasRESUMEN
Membrane vesicles (MVs) are envelope-derived extracellular sacs that perform a broad diversity of physiological functions in bacteria. While considerably studied in pathogenic microorganisms, the roles, relevance, and biotechnological potential of MVs from environmental bacteria are less well established. Acidithiobacillaceae family bacteria are active players in the sulfur and iron biogeochemical cycles in extremely acidic environments and drivers of the leaching of mineral ores contributing to acid rock/mine drainage (ARD/AMD) and industrial bioleaching. One key aspect of such a role is the ability of these bacteria to tightly interact with the mineral surfaces and extract electrons and nutrients to support their chemolithotrophic metabolism. Despite recent advances in the characterization of acidithiobacilli biofilms and extracellular matrix (ECM) components, our understanding of its architectural and mechanistic aspects remains scant. Using different microscopy techniques and nano-tracking analysis we show that vesiculation is a common phenomenon in distant members of the Acidithiobacillaceae family, and further explore the role of MVs in multicellular colonization behaviors using 'Fervidacidithiobacillus caldus' as a bacterial model. Production of MVs in 'F. caldus' occurred in both planktonic cultures and biofilms formed on sulfur surfaces, where MVs appeared individually or in chains resembling tube-shaped membranous structures (TSMSs) important for microbial communication. Liquid chromatography-mass spectrometry data and bioinformatic analysis of the MV-associated proteome revealed that 'F. caldus' MVs were enriched in proteins involved in cell-cell and cell-surface processes and largely typified the MVs as outer MVs (OMVs). Finally, microbiological assays showed that amendment of 'F. caldus' MVs to cells and/or biofilms affects collective colonizing behaviors relevant to the ecophysiology and applications of these acidophiles, providing grounds for their exploitation in biomining.
RESUMEN
Leptospirosis is a neglected infectious disease with global impact on both humans and animals. The increase in urban development without sanitation planning is one of the main reasons for the disease spreading. The symptoms are similar to those of flu-like diseases, such as dengue, yellow fever, and malaria, which can result in a misleading clinical diagnosis. The characterization of host-pathogen interactions is important in the development of new vaccines, treatments, and diagnostics. However, the pathogenesis of leptospirosis is not well understood, and many gaps remain to be addressed. Here, we aimed to determine if Leptospira strains, virulent, culture-attenuated, and saprophytic, and the major outer membrane proteins OmpL37, OmpL1, LipL21, LipL41, and LipL46 are able to adhere to different endothelial, epithelial and fibroblast cell lines in vitro. We showed that virulent leptospires robustly bind to all cells compared to the culture-attenuated and saprophytic lines. The recombinant proteins exhibited certain adhesion, but only OmpL1 and LipL41 were able to bind to several cell lines, either in monolayer or in cell suspension. Blocking OmpL1 with polyclonal antibodies caused a decrease in bacterial binding to cells, contrasting with an increase observed when anti-LipL41 antibodies were used. The adhesion of OmpL1 to HMEC-1 and EA.hy926 was inhibited when cells were pre-incubated with collagen IV, suggesting that both compete for the same cell receptor. We present here for the first time the interaction of five leptospiral outer membrane proteins with several cell lines, and we conclude that LipL41 and OmpL1 may have an impact on leptospiral adhesion to mammalian cells and may mediate the colonization process in leptospiral pathogenesis.
Asunto(s)
Leptospira interrogans , Leptospira , Leptospirosis , Animales , Humanos , Leptospira interrogans/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Adhesinas Bacterianas , Anticuerpos Antibacterianos , Mamíferos/metabolismoRESUMEN
Staphylococcus aureus causes nosocomial and intramammary infections in humans and cattle, respectively. A large number of virulence factors are thought to play important roles in the pathogenesis of this bacterium. Currently, genome-wide and data-analysis studies are being used to better understand its epidemiology. In this study, we conducted a genome wide comparison and phylogenomic analyses of S. aureus to find specific virulence patterns associated with clinical and subclinical mastitis strains in cattle and compare them with those of human origin. The presence/absence of key virulence factors such as adhesin, biofilm, antimicrobial resistance, and toxin genes, as well as the phylogeny and sequence type of the isolates were evaluated. A total of 248 genomes (27 clinical mastitis, 43 subclinical mastitis, 21 milk, 53 skin-related abscesses, 49 skin infections, and 55 pus from cellulitis) isolated from 32 countries were evaluated. We found that the cflA, fnbA, ebpS, spa, sdrC, coa, emp, vWF, atl, sasH, sasA, and sasF adhesion genes, as well as the aur, hglA, hglB, and hglC toxin genes were highly associated in clinical mastitis strains. The strains had diverse genetic origins (72 protein A and 48 sequence types with ST97, ST8 and ST152 being frequent in isolates from clinical mastitis, abscess, and skin infection, respectively). Further, our phylogenomic analyses suggested that zoonotic and/or zooanthroponotic transmission may have occurred. These findings contribute to a better understanding of S. aureus epidemiology and the relationships between adhesion mechanisms, biofilm formation, antimicrobial resistance, and toxins and could aid in the development of improved vaccines and strain genotyping methods.
RESUMEN
Enteroaggregative Escherichia coli (EAEC) is an important cause of diarrhea in children and adults worldwide. This pathotype is phenotypically characterized by the aggregative-adherence (AA) pattern in HEp-2 cells and genetically associated to the presence of the aatA gene. EAEC pathogenesis relies in different virulence factors. At least, three types of adhesins have been specifically associated with EAEC strains: the five variants of the aggregative adherence fimbriae (AAF), the aggregative forming pilus (AFP) and more recently, a fibrilar adhesin named CS22. Our study aimed to evaluate the presence of AAF, AFP and CS22-related genes among 110 EAEC strains collected from feces of children with diarrhea. The presence of aggR (EAEC virulence regulator) and genes related to AAFs (aggA, aafA, agg3A, agg4A, agg5A and agg3/4C), AFP (afpA1 and afpR) and CS22 (cseA) was detected by PCR, and the adherence patterns were evaluated on HeLa cells. aggR-positive strains comprised 83.6% of the collection; among them, 80.4% carried at least one AAF-related gene and presented the AA pattern. aggA was the most frequent AAF-related gene (28.4% of aggR+ strains). cseA was detected among aggR+ (16.3%) and aggR- strains (22.2%); non-adherent strains or strains presenting AA pattern were observed in both groups. afpR and afpA1 were exclusively detected among aggR- strains (77.8%), most of which (71.4%) also presented AA pattern. Our results indicate that AAF- and AFP-related genes may contribute to identify EAEC strains, while the presence of cseA and its importance as an EAEC virulence factor and genotypic marker needs to be further evaluated.
Asunto(s)
Adhesinas Bacterianas , Escherichia coli , alfa-Fetoproteínas , Niño , Humanos , Adhesinas Bacterianas/genética , Adhesión Bacteriana/genética , Biomarcadores , Diarrea/microbiología , Escherichia coli/genética , Células HeLa , Factores de Virulencia/genéticaRESUMEN
Sporotrichosis is a chronic fungal disease of humans and other mammals that often affects the skin and subcutaneous tissues and, rarely, deep-seated organs (most frequently in immunocompetent hosts) [...].
RESUMEN
Leptospirosis is a neglected infectious disease with global impact on both humans and animals. The increase in urban development without sanitation planning is one of the main reasons for the disease spreading. The symptoms are similar to those of flu-like diseases, such as dengue, yellow fever, and malaria, which can result in a misleading clinical diagnosis. The characterization of host–pathogen interactions is important in the development of new vaccines, treatments, and diagnostics. However, the pathogenesis of leptospirosis is not well understood, and many gaps remain to be addressed. Here, we aimed to determine if Leptospira strains, virulent, culture-attenuated, and saprophytic, and the major outer membrane proteins OmpL37, OmpL1, LipL21, LipL41, and LipL46 are able to adhere to different endothelial, epithelial and fibroblast cell lines in vitro. We showed that virulent leptospires robustly bind to all cells compared to the culture-attenuated and saprophytic lines. The recombinant proteins exhibited certain adhesion, but only OmpL1 and LipL41 were able to bind to several cell lines, either in monolayer or in cell suspension. Blocking OmpL1 with polyclonal antibodies caused a decrease in bacterial binding to cells, contrasting with an increase observed when anti-LipL41 antibodies were used. The adhesion of OmpL1 to HMEC-1 and EA.hy926 was inhibited when cells were pre-incubated with collagen IV, suggesting that both compete for the same cell receptor. We present here for the first time the interaction of five leptospiral outer membrane proteins with several cell lines, and we conclude that LipL41 and OmpL1 may have an impact on leptospiral adhesion to mammalian cells and may mediate the colonization process in leptospiral pathogenesis.
RESUMEN
Enteroaggregative Escherichia coli (EAEC) is an important cause of diarrhea in children and adults worldwide. This pathotype is phenotypically characterized by the aggregative-adherence (AA) pattern in HEp-2 cells and genetically associated to the presence of the aatA gene. EAEC pathogenesis relies in different virulence factors. At least, three types of adhesins have been specifically associated with EAEC strains: the five variants of the aggregative adherence fimbriae (AAF), the aggregative forming pilus (AFP) and more recently, a fibrilar adhesin named CS22. Our study aimed to evaluate the presence of AAF, AFP and CS22-related genes among 110 EAEC strains collected from feces of children with diarrhea. The presence of aggR (EAEC virulence regulator) and genes related to AAFs (aggA, aafA, agg3A, agg4A, agg5A and agg3/4C), AFP (afpA1 and afpR) and CS22 (cseA) was detected by PCR, and the adherence patterns were evaluated on HeLa cells. aggR-positive strains comprised 83.6% of the collection; among them, 80.4% carried at least one AAF-related gene and presented the AA pattern. aggA was the most frequent AAF-related gene (28.4% of aggR+ strains). cseA was detected among aggR+ (16.3%) and aggR- strains (22.2%); non-adherent strains or strains presenting AA pattern were observed in both groups. afpR and afpA1 were exclusively detected among aggR- strains (77.8%), most of which (71.4%) also presented AA pattern. Our results indicate that AAF- and AFP-related genes may contribute to identify EAEC strains, while the presence of cseA and its importance as an EAEC virulence factor and genotypic marker needs to be further evaluated.
RESUMEN
Leptospira spp. constitui um grupo de bactérias espiroquetas gram-negativas englobando espécies saprofíticas, intermediárias e patogênicas, sendo as últimas agentes causadores da leptospirose, doença zoonótica de alcance mundial e endêmica em regiões tropicais em desenvolvimento. O crescente número de espécies identificadas de leptospiras destaca ainda mais sua diversidade genética e mecanismos de virulência únicos, muitos deles com função ainda desconhecida. Esforços para o desenvolvimento de novas vacinas com proteção cruzada e efeito duradouro revelaram possíveis candidatos vacinais que necessitam ser adequadamente validados, sendo assim, há ainda uma urgente necessidade de uma vacina universal contra a leptospirose capaz de controlar e reduzir os surtos cada vez mais frequentes da doença. Adesinas são importantes fatores de virulência em diversos patógenos, constituindo antígenos promissores para o desenvolvimento de vacinas contra a leptospirose, assim como para o desenvolvimento de métodos diagnósticos mais rápidos e precisos. Previamente, foram identificadas três proteínas hipotéticas conservadas em L. interrogans pela técnica de phage display, denominadas arbitrariamente como LepA069, LepA962 e LepA388. A expressão do gene codificador da proteína LepA069 apresentou aumento de aproximadamente 70 % em animais infectados por leptospiras virulentas, representando a primeira evidência funcional desta proteína ainda desconhecida. Porções recombinantes da lipoproteína hipotética LepA962 (LepA962_Nt e LepA962_Phg) foram obtidos, sendo demonstrada a forte interação da proteína LepA962_Phg, contendo a sequência identificada por phage display, com laminina, fibronectina plasmática, colágeno I e fibrinogênio de maneira dose-dependente. Adicionalmente, LepA962_Phg apresentou ligação às células VERO e à sua matriz extracelular secretada, e o soro obtido a partir desta proteína recombinante foi capaz de se ligar à superfície de leptospiras virulentas, indicando que LepA962_Phg pode representar um importante domínio de interação entre as leptospiras e seu hospedeiro. Finalmente, a proteína LepA388 pertencente a uma extensa família de proteínas modificadoras de virulência com função desconhecida (DUF_61), presente apenas nas leptospiras patogênicas mais virulentas, apresentou aumento na expressão de seu gene codificador em animais infectados por leptospiras virulentas de acordo com dados na literatura. Além disso, porções recombinantes da região Nterminal desta proteína apresentaram ligação a laminina, colágenos I e IV, vitronectina e fibronectinas plasmática e celular, principalmente considerando a sequência identificada por phage display. Estes dados reforçam as predições de modelos tridimensionais da proteína LepA388 e de outros membros da família DUF_61, as quais identificam domínios semelhantes a toxinas (como abrina e CARDS) responsáveis pela ligação e internalização celulares nos hospedeiros. Dados recentes sugerem um possível papel citotóxico desempenhado pelas proteínas desta família em leptospiras, as quais podem também ser consideradas potenciais candidatas vacinais e para diagnóstico da leptospirose, devido à sua distribuição restrita em espécies e cepas patogênicas de importância para saúde humana.
Leptospira spp. constitutes a group of gram-negative spirochete bacteria comprising saprophytic, intermediate and pathogenic species, the last being causative agents of leptospirosis, a zoonotic disease of worldwide extent and endemic in developing tropical regions. The growing number of identified leptospiral species further highlights their genetic diversity and unique virulence mechanisms, many of them with unknown function. Efforts to develop new vaccines with cross-protection and long-lasting effect have revealed possible vaccine candidates that need to be properly validated. Therefore, there is still an urgent need for a universal vaccine against leptospirosis capable of controlling and reducing the increasing outbreaks of the disease. Adhesins are important virulence factors in several pathogens, constituting promising antigens for the development of vaccines against leptospirosis, as well as for the development of faster and more accurate diagnostic methods. Previously, three conserved hypothetical proteins in L. interrogans were identified by phage display technique, arbitrarily named as LepA069, LepA962 and LepA388. Expression of the LepA069 encoding gene showed an increase of approximately 70 % in animals infected by virulent leptospires, representing the first functional evidence of this still unknown protein. Recombinant portions of the hypothetical lipoprotein LepA962 (LepA962_Nt and LepA962_Phg) were obtained, demonstrating the strong interaction of the LepA962_Phg protein, containing the sequence identified by phage display, with laminin, plasma fibronectin, collagen I and fibrinogen in a dose-dependent manner. Furthermore, LepA962_Phg showed binding to VERO cells and its secreted extracellular matrix, and the serum obtained from this recombinant protein was able to bind to the surface of virulent leptospires, indicating that LepA962_Phg may represent an important domain of interaction between leptospires and its host. Finally, LepA388 protein belonging to an extensive family of virulence modifying proteins with unknown function (DUF_61), present only in the most virulent pathogenic leptospires, showed an increase in the expression of its encoding gene in animals infected by virulent leptospires according to data in literature. Moreover, recombinant portions of the N-terminal region of this protein showed binding to laminin, collagens I and IV, vitronectin and plasma and cell fibronectins, especially considering the sequence identified by phage display. These data support the predictions of three-dimensional models of the LepA388 protein and other members of the DUF_61 family, which identify toxin-like domains (such as abrin and CARDS) responsible for cellular binding and internalization in hosts. Recent data suggest a possible cytotoxic role played by proteins of this family in leptospires, which can also be considered potential vaccine candidates and antigens for diagnosis, due to their restricted distribution in pathogenic species and strains of importance to human health
Asunto(s)
Adhesinas Bacterianas/clasificación , Factores de Virulencia/efectos adversos , Desarrollo de Vacunas/instrumentación , Leptospira interrogans/metabolismo , Virulencia , Vacunas/análisis , Dosificación , Técnicas de Visualización de Superficie Celular , Leptospirosis/patologíaRESUMEN
A central aspect of Brucella pathogenicity is its ability to invade, survive, and replicate in diverse phagocytic and non-phagocytic cell types, leading to chronic infections and chronic inflammatory phenomena. Adhesion to the target cell is a critical first step in the invasion process. Several Brucella adhesins have been shown to mediate adhesion to cells, extracellular matrix components (ECM), or both. These include the sialic acid-binding proteins SP29 and SP41 (binding to erythrocytes and epithelial cells, respectively), the BigA and BigB proteins that contain an Ig-like domain (binding to cell adhesion molecules in epithelial cells), the monomeric autotransporters BmaA, BmaB, and BmaC (binding to ECM components, epithelial cells, osteoblasts, synoviocytes, and trophoblasts), the trimeric autotransporters BtaE and BtaF (binding to ECM components and epithelial cells) and Bp26 (binding to ECM components). An in vivo role has also been shown for the trimeric autotransporters, as deletion mutants display decreased colonization after oral and/or respiratory infection in mice, and it has also been suggested for BigA and BigB. Several adhesins have shown unipolar localization, suggesting that Brucella would express an adhesive pole. Adhesin-based vaccines may be useful to prevent brucellosis, as intranasal immunization in mice with BtaF conferred high levels of protection against oral challenge with B. suis.
RESUMEN
BACKGROUND: Tuberculosis is an important health problem worldwide. The only available vaccine is M. bovis/BCG, an attenuated mycobacterium that activates the innate and the acquired immune system after being phagocytosed by macrophages and dendritic cells. Vaccination fails to prevent adult pulmonary tuberculosis although it may have a protective effect in childhood infection. Understanding how BCG interacts with macrophages and other immunocompetent cells is crucial to develop new vaccines. RESULTS: In this study we showed that macrophages phagocytose M. bovis/BCG bacilli with higher efficiency when they are cultured without phosphate. We isolated mycobacterial membranes to search for mycobacterial molecules that could be involved in these processes; by immunoblot, it was found that the plasma membranes of phosphate-deprived bacilli express the adhesins PstS-1, LpqH, LprG, and the APA antigen. These proteins are not detected in membranes of bacilli grown with usual amounts of phosphate. CONCLUSIONS: The interest of our observations is to show that under the metabolic stress implied in phosphate deprivation, mycobacteria respond upregulating adhesins that could improve their capacity to infect macrophages. These observations are relevant to understand how M. bovis/BCG induces protective immunity.
Asunto(s)
Vacuna BCG/inmunología , Macrófagos/inmunología , Mycobacterium bovis/inmunología , Fagocitosis/inmunología , Fosfatos/inmunología , Tuberculosis Pulmonar/inmunología , Inmunidad Adaptativa/inmunología , Animales , Antígenos/inmunología , Línea Celular Tumoral , Membrana Celular/inmunología , Inmunidad Innata/inmunología , Ratones , Ratones Endogámicos BALB C , Vacunación/métodosRESUMEN
Mycoplasma hyopneumoniae and Mycoplasma flocculare are genetic similar bacteria that colonize the swine respiratory tract. However, while M. hyopneumoniae is a pathogen that causes porcine enzootic pneumonia, M. flocculare is a commensal. Adhesion to the respiratory epithelium is mediated by surface-displayed adhesins, and at least some M. hyopneumoniae adhesins are post-translational proteolytically processed, producing differential proteoforms with differential adhesion properties. Based on LC-MS/MS data, we assessed differential proteolytic processing among orthologs of the five most abundant adhesins (p97 and p216) or adhesion-related surface proteins (DnaK, p46, and ABC transporter xylose-binding lipoprotein) from M. hyopneumoniae strains 7448 (pathogenic) and J (non-pathogenic), and M. flocculare. Both surface and cytoplasmic non-tryptic cleavage events were mapped and compared, and antigenicity predictions were performed for the resulting proteoforms. It was demonstrated that not only bona fide adhesins, but also adhesion-related proteins undergo proteolytical processing. Moreover, most of the detected cleavage events were differential among M. hyopneumoniae strains and M. flocculare, and also between cell surface and cytoplasm. Overall, our data provided evidences of a complex scenario of multiple antigenic proteoforms of adhesion-related proteins, that is differential among M. hyopneumoniae strains and M. flocculare, altering the surface architecture and likely contributing to virulence and pathogenicity.
Asunto(s)
Proteínas Bacterianas/metabolismo , Mycoplasma hyopneumoniae/metabolismo , Mycoplasma/metabolismo , Neumonía Porcina por Mycoplasma/microbiología , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Animales , Proteínas Bacterianas/genética , Mycoplasma/genética , Mycoplasma hyopneumoniae/genética , Procesamiento Proteico-Postraduccional , Proteolisis , PorcinosRESUMEN
Heat shock proteins (Hsps) are among the most widely distributed and evolutionary conserved proteins, acting as essential regulators of diverse constitutive metabolic processes. The Hsp60 of the dimorphic fungal Histoplasma capsulatum is the major surface adhesin to mammalian macrophages and studies of antibody-mediated protection against H. capsulatum have provided insight into the complexity involving Hsp60. However, nothing is known about the role of Hsp60 regarding biofilms, a mechanism of virulence exhibited by H. capsulatum. Considering this, the present study aimed to investigate the influence of the Hsp60 on biofilm features of H. capsulatum. Also, the non-conventional model Galleria mellonella was used to verify the effect of this protein during in vivo interaction. The use of invertebrate models such as G. mellonella is highly proposed for the evaluation of pathogenesis, immune response, virulence mechanisms, and antimicrobial compounds. For that purpose, we used a monoclonal antibody (7B6) against Hsp60 and characterized the biofilm of two H. capsulatum strains by metabolic activity, biomass content, and images from scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). We also evaluated the survival rate of G. mellonella infected with both strains under blockage of Hsp60. The results showed that mAb 7B6 was effective to reduce the metabolic activity and biomass of both H. capsulatum strains. Furthermore, the biofilms of cells treated with the antibody were thinner as well as presented a lower amount of cells and extracellular polymeric matrix compared to its non-treated controls. The blockage of Hsp60 before fungal infection of G. mellonella larvae also resulted in a significant increase of the larvae survival compared to controls. Our results highlight for the first time the importance of the Hsp60 protein to the establishment of the H. capsulatum biofilms and the G. mellonella larvae infection. Interestingly, the results with Hsp60 mAb 7B6 in this invertebrate model suggest a pattern of fungus-host interaction different from those previously found in a murine model, which can be due to the different features between insect and mammalian immune cells such as the absence of Fc receptors in hemocytes. However further studies are needed to support this hypothesis.
Asunto(s)
Chaperonina 60 , Histoplasma , Animales , Anticuerpos Monoclonales , Biopelículas , Chaperonina 60/genética , Macrófagos , RatonesRESUMEN
Brucella enters their hosts mostly through mucosae from where it spreads systemically. Adhesion to extracellular matrix (ECM) components or to host cells is important for the infectious process, and is mediated by several adhesins, including the BtaF trimeric autotransporter. Although Th1 responses and gamma interferon (IFN-γ) are important for protection, antibodies able to block adhesions might also contribute to prevent Brucella infection. We evaluated the importance of BtaF for respiratory Brucella infection, and characterized the immune response and protection from mucosal challenge induced by nasal vaccination with recombinant BtaF. While lung CFU numbers did not differ at day 1 p.i. between mice intratracheally inoculated with B. suis M1330 (wild type) and those receiving a ΔbtaF mutant, they were reduced in the latter group at 7 and 30 days p.i. For vaccination studies the BtaF passenger domain was engineered and expressed as a soluble trimeric protein. Mice were immunized by the nasal route with BtaF or saline (control group) plus the mucosal adjuvant c-di-AMP. Specific anti-BtaF antibodies (IgG and IgA) were increased in serum, including a mixed IgG2a/IgG1 response. In vitro, these antibodies reduced bacterial adhesion to A549 alveolar epithelial cells. Specific IgA antibodies were also increased in several mucosae. Spleen cells from BtaF immunized mice significantly increased their IL-2, IL-5, IL-17, and IFN-γ secretion upon antigen stimulation. In cervical draining lymph nodes, antigen-experienced CD4+ T cells were maintained mainly as central memory cells. A BtaF-specific delayed-type hypersensitivity response was detected in BtaF immunized mice. Lung cells from the latter produced high levels of IFN-γ upon antigen stimulation. Although nasal immunization with BtaF did not protect mice against B. suis respiratory challenge, it conferred significant protection from intragastric challenge; the splenic load of B. suis was reduced by 3.28 log CFU in immunized mice. This study shows that nasal vaccination with BtaF+c-di-AMP protects against intragastric challenge with B. suis by inducing local and systemic antibody responses, central memory CD4+ T cells and strong Th1 responses. Therefore, although BtaF vaccination did not protect from B. suis respiratory infection, this adhesin constitutes a promising immunogen against mucosal B. suis infection.