Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Bot ; 106(1): 137-144, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30644542

RESUMEN

PREMISE OF THE STUDY: The traditional approach used in analyses of population genetic data for historical inference is to average across multiple marker loci, but averaging conflates the different evolutionary signals provided by stable vs. labile markers. METHODS: We used a battery of microsatellites with a wide range of mutation/substitution rates, grouping them into two sets (stable and hypervariable) to provide a more nuanced reconstruction of the population genetics and evolutionary history of the allotriploid peat moss Sphagnum × falcatulum across three disjunct regions. KEY RESULTS: Shannon diversity translation analyses show that the relative apportionment of total within-species allelic diversity (∆WS ) within and among strata ranges widely, both between the two sets and within and among regions. The majority of diversity in the stable set was inherited directly from the ancestors of this genetically complex allopolyploid, but most of the diversity in the hypervariable set has developed post-hybrid-origin. CONCLUSIONS: It is useful to group markers into sets having similar evolutionary lability, with each set being analyzed separately, particularly for allopolyploids. A methodology for determining how to group markers into such sets is presented, which can be applied to the requirements of other studies. Within-individual allelic diversity (ΔWI ) should be addressed in genetic studies on allopolyploids. Allotriploid haplotypes based on a set of nine highly stable microsatellites appear to serve as a clonal-detection set for S. × falcatulum. An additive "allele-metric" diversity approach is introduced, which facilitates a direct comparison of within- and among-stratum diversity components at all levels of diversity.


Asunto(s)
Marcadores Genéticos , Variación Genética , Ploidias , Sphagnopsida/genética , Alelos , Repeticiones de Microsatélite
2.
Ecol Evol ; 6(21): 7742-7762, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30128125

RESUMEN

To evaluate the regional biogeographical patterns of West Indian native and nonnative herpetofauna, we derived and updated data on the presence/absence of all herpetofauna in this region from the recently published reviews. We divided the records into 24 taxonomic groups and classified each species as native or nonnative at each locality. For each taxonomic group and in aggregate, we then assessed the following: (1) multiple species-area relationship (SAR) models; (2) C- and Z-values, typically interpreted to represent insularity or dispersal ability; and (3) the average diversity of islands, among-island heterogeneity, γ-diversity, and the contribution of area effect toward explaining among-island heterogeneity using additive diversity partitioning approach. We found the following: (1) SARs were best modeled using the Cumulative Weibull and Lomolino relationships; (2) the Cumulative Weibull and Lomolino regressions displayed both convex and sigmoid curves; and (3) the Cumulative Weibull regressions were more conservative than Lomolino at displaying sigmoid curves within the range of island size studied. The Z-value of all herpetofauna was overestimated by Darlington (Zoogeography: The geographic distribution of animals, John Wiley, New York, 1957), and Z-values were ranked: (1) native > nonnative; (2) reptiles > amphibians; (3) snake > lizard > frog > turtle > crocodilian; and (4) increased from lower- to higher-level taxonomic groups. Additive diversity partitioning showed that area had a weaker effect on explaining the among-island heterogeneity for nonnative species than for native species. Our findings imply that the flexibility of Cumulative Weibull and Lomolino has been underappreciated in the literature. Z-value is an average of different slopes from different scales and could be artificially overestimated due to oversampling islands of intermediate to large size. Lower extinction rate, higher colonization, and more in situ speciation could contribute to high richness of native species on large islands, enlarging area effect on explaining the between-island heterogeneity for native species, whereas economic isolation on large islands could decrease the predicted richness, lowering the area effect for nonnative species. For most of the small islands less affected by human activities, extinction and dispersal limitation are the primary processes producing low species richness pattern, which decreases the overall average diversity with a large among-island heterogeneity corresponding to the high value of this region as a biodiversity hotspot.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA