Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros











Intervalo de año de publicación
1.
Acta Pharm Sin B ; 14(6): 2537-2553, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828141

RESUMEN

The formation of new and functional cardiomyocytes requires a 3-step process: dedifferentiation, proliferation, and redifferentiation, but the critical genes required for efficient dedifferentiation, proliferation, and redifferentiation remain unknown. In our study, a circular trajectory using single-nucleus RNA sequencing of the pericentriolar material 1 positive (PCM1+) cardiomyocyte nuclei from hearts 1 and 3 days after surgery-induced myocardial infarction (MI) on postnatal Day 1 was reconstructed and demonstrated that actin remodeling contributed to the dedifferentiation, proliferation, and redifferentiation of cardiomyocytes after injury. We identified four top actin-remodeling regulators, namely Tmsb4x, Tmsb10, Dmd, and Ctnna3, which we collectively referred to as 2D2P. Transiently expressed changes of 2D2P, using a polycistronic non-integrating lentivirus driven by Tnnt2 (cardiac-specific troponin T) promoters (Tnnt2-2D2P-NIL), efficiently induced transiently proliferative activation and actin remodeling in postnatal Day 7 cardiomyocytes and adult hearts. Furthermore, the intramyocardial delivery of Tnnt2-2D2P-NIL resulted in a sustained improvement in cardiac function without ventricular dilatation, thickened septum, or fatal arrhythmia for at least 4 months. In conclusion, this study highlights the importance of actin remodeling in cardiac regeneration and provides a foundation for new gene-cocktail-therapy approaches to improve cardiac repair and treat heart failure using a novel transient and cardiomyocyte-specific viral construct.

2.
Curr Issues Mol Biol ; 46(4): 3278-3293, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38666935

RESUMEN

Protein S (PROS1) is a vitamin K-dependent anticoagulant factor, which also acts as an agonist for the TYRO3, AXL, and MERTK (TAM) tyrosine kinase receptors. PROS1 is produced by the endothelium which also expresses TAM receptors, but little is known about its effects on vascular function and permeability. Transwell permeability assays as well as Western blotting and immunostaining analysis were used to monitor the possible effects of PROS1 on both endothelial cell permeability and on the phosphorylation state of specific signaling proteins. We show that human PROS1, at its circulating concentrations, substantially increases both the basal and VEGFA-induced permeability of endothelial cell (EC) monolayers. PROS1 induces p38 MAPK (Mitogen Activated Protein Kinase), Rho/ROCK (Rho-associated protein kinase) pathway activation, and actin filament remodeling, as well as substantial changes in Vascular Endothelial Cadherin (VEC) distribution and its phosphorylation on Ser665 and Tyr685. It also mediates c-Src and PAK-1 (p21-activated kinase 1) phosphorylation on Tyr416 and Ser144, respectively. Exposure of EC to human PROS1 induces VEC internalization as well as its cleavage into a released fragment of 100 kDa and an intracellular fragment of 35 kDa. Using anti-TAM neutralizing antibodies, we demonstrate that PROS1-induced VEC and c-Src phosphorylation are mediated by both the MERTK and TYRO3 receptors but do not involve the AXL receptor. MERTK and TYRO3 receptors are also responsible for mediating PROS1-induced MLC (Myosin Light Chain) phosphorylation on a site targeted by the Rho/ROCK pathway. Our report provides evidence for the activation of the c-Src/VEC and Rho/ROCK/MLC pathways by PROS1 for the first time and points to a new role for PROS1 as an endogenous vascular permeabilizing factor.

3.
Methods Mol Biol ; 2761: 257-266, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427242

RESUMEN

Cytoskeletal dysregulation forms an important aspect of many neurodegenerative diseases such as Alzheimer's disease. Cytoskeletal functions require the dynamic activity of the cytoskeletal proteins-actin, tubulin, and the associated proteins. One of such important phenomena is that of actin remodeling, which helps the cell to migrate, navigate, and interact with extracellular materials. Podosomes are complex actin-rich cytoskeletal structures, abundant in proteins that interact and degrade the extracellular matrix, enabling cells to displace and migrate. The formation of podosomes requires extensive actin networks and remodeling. Here we present a novel immunofluorescence-based approach to study actin remodeling in neurons through the medium of podosomes.


Asunto(s)
Actinas , Podosomas , Actinas/metabolismo , Podosomas/metabolismo , Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Citoesqueleto de Actina/metabolismo
4.
Biomed Pharmacother ; 171: 116124, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38198957

RESUMEN

Lung cancer represents a significant global health concern and stands as the leading cause of cancer-related mortality worldwide. The identification of specific genomic alterations such as EGFR and KRAS in lung cancer has paved the way for the development of targeted therapies. While targeted therapies for lung cancer exhibiting EGFR, MET and ALK mutations have been well-established, the options for RET mutations remain limited. Importantly, RET mutations have been found to be mutually exclusive from other genomic mutations and to be related with high incidences of brain metastasis. Given these facts, it is imperative to explore the development of RET-targeting therapies and to elucidate the mechanisms underlying metastasis in RET-expressing lung cancer cells. In this study, we investigated PLM-101, a novel dual-target inhibitor of RET/YES1, which exhibits notable anti-cancer activities against CCDC6-RET-positive cancer cells and anti-metastatic effects against YES1-positive cancer cells. Our findings shed light on the significance of the YES1-Cortactin-actin remodeling pathway in the metastasis of lung cancer cells, establishing YES1 as a promising target for suppression of metastasis. This paper unveils a novel inhibitor that effectively targets both RET and YES1, thereby demonstrating its potential to impede the growth and metastasis of RET rearrangement lung cancer.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Receptores ErbB/metabolismo , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-yes
5.
Biol Psychiatry ; 95(2): 161-174, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37704042

RESUMEN

BACKGROUND: 15q11.2 deletions and duplications have been linked to autism spectrum disorder, schizophrenia, and intellectual disability. Recent evidence suggests that dysfunctional CYFIP1 (cytoplasmic FMR1 interacting protein 1) contributes to the clinical phenotypes observed in individuals with 15q11.2 deletion/duplication syndrome. CYFIP1 plays crucial roles in neuronal development and brain connectivity, promoting actin polymerization and regulating local protein synthesis. However, information about the impact of single nucleotide variants in CYFIP1 on neurodevelopmental disorders is limited. METHODS: Here, we report a family with 2 probands exhibiting intellectual disability, autism spectrum disorder, spastic tetraparesis, and brain morphology defects and who carry biallelic missense point mutations in the CYFIP1 gene. We used skin fibroblasts from one of the probands, the parents, and typically developing individuals to investigate the effect of the variants on the functionality of CYFIP1. In addition, we generated Drosophila knockin mutants to address the effect of the variants in vivo and gain insight into the molecular mechanism that underlies the clinical phenotype. RESULTS: Our study revealed that the 2 missense variants are in protein domains responsible for maintaining the interaction within the wave regulatory complex. Molecular and cellular analyses in skin fibroblasts from one proband showed deficits in actin polymerization. The fly model for these mutations exhibited abnormal brain morphology and F-actin loss and recapitulated the core behavioral symptoms, such as deficits in social interaction and motor coordination. CONCLUSIONS: Our findings suggest that the 2 CYFIP1 variants contribute to the clinical phenotype in the probands that reflects deficits in actin-mediated brain development processes.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/genética , Actinas/genética , Actinas/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Polimerizacion , Proteínas Adaptadoras Transductoras de Señales/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo
6.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37762638

RESUMEN

The dynamic rearrangement of the actin cytoskeleton plays an essential role in myogenesis, which is regulated by diverse mechanisms, such as mechanotransduction, modulation of the Hippo signaling pathway, control of cell proliferation, and the influence of morphological changes. Despite the recognized importance of actin-binding protein Flightless-1 (FLII) during actin remodeling, the role played by FLII in the differentiation of myogenic progenitor cells has not been explored. Here, we investigated the roles of FLII in the proliferation and differentiation of myoblasts. FLII was found to be enriched in C2C12 myoblasts, and its expression was stable during the early stages of differentiation but down-regulated in fully differentiated myotubes. Knockdown of FLII in C2C12 myoblasts resulted in filamentous actin (F-actin) accumulation and inhibited Yes-associated protein 1 (YAP1) phosphorylation, which triggers its nuclear translocation from the cytoplasm. Consequently, the expressions of YAP1 target genes, including PCNA, CCNB1, and CCND1, were induced, and the cell cycle and proliferation of myoblasts were promoted. Moreover, FLII knockdown significantly inhibited the expression of myogenic regulatory factors, i.e., MyoD and MyoG, thereby impairing myoblast differentiation, fusion, and myotube formation. Thus, our findings demonstrate that FLII is crucial for the differentiation of myoblasts via modulation of the F-actin/YAP1 axis and suggest that FLII is a putative novel therapeutic target for muscle wasting.


Asunto(s)
Actinas , Mecanotransducción Celular , Genes cdc , Células Madre , Proteínas Adaptadoras Transductoras de Señales/genética , Diferenciación Celular/genética
7.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37445780

RESUMEN

Through a process termed clot retraction, platelets cause thrombi to shrink and become more stable. After platelets are activated via inside-out signaling, glycoprotein αIIbßIII binds to fibrinogen and initiates a cascade of intracellular signaling that ends in actin remodeling, which causes the platelet to change its shape. Clot retraction is also important for wound healing. Although the detailed molecular biology of clot retraction is only partially understood, various substances and physiological conditions modulate clot retraction. In this review, we describe some of the current literature pertaining to clot retraction modulators. In addition, we discuss compounds from Cudrania trucuspidata, Arctium lappa, and Panax ginseng that diminish clot retraction and have numerous other health benefits. Caffeic acid and diindolylmethane, both common in plants and vegetables, likewise reduce clot retraction, as do all-trans retinoic acid (a vitamin A derivative), two MAP4K inhibitors, and the chemotherapeutic drug Dasatinib. Conversely, the endogenous anticoagulant Protein S (PS) and the matricellular protein secreted modular calcium-binding protein 1 (SMOC1) both enhance clot retraction. Most studies aiming to identify mechanisms of clot retraction modulators have focused on the increased phosphorylation of vasodilator-stimulated phosphoprotein and inositol 1,4,5-triphosphate receptor I and the decreased phosphorylation of various phospholipases (e.g., phospholipase A2 (PLA2) and phosphatidylinositol-specific phospholipase Cγ2 (PLCγ2), c-Jun N-terminal kinase, and (PI3Ks). One study focused on the decreased phosphorylation of Sarcoma Family Kinases (SFK), and others have focused on increased cAMP levels and the downregulation of inflammatory markers such as thromboxanes, including thromboxane A2 (TXA2) and thromboxane B2 (TXB2); prostaglandin A2 (PGE2); reactive oxygen species (ROS); and cyclooxygenase (COX) enzyme activity. Additionally, pregnancy, fibrinolysis, and the autoimmune condition systemic lupus erythematosus all seem to affect, or at least have some relation with, clot retraction. All the clot retraction modulators need in-depth study to explain these effects.


Asunto(s)
Plaquetas , Agregación Plaquetaria , Plaquetas/metabolismo , Retracción del Coagulo , Fosforilación , Transducción de Señal
8.
Redox Biol ; 64: 102784, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356135

RESUMEN

Neutrophil extracellular traps (NETs) are web-like structures of DNA coated with cytotoxic proteins and histones released by activated neutrophils through a process called NETosis. NETs release occurs through a sequence of highly organized events leading to chromatin expansion and rupture of nuclear and cellular membranes. In calcium ionophore-induced NETosis, the enzyme peptidylargine deiminase 4 (PAD4) mediates chromatin decondensation through histone citrullination, but the biochemical pathways involved in this process are not fully understood. Here we use live-imaging microscopy and proteomic studies of the neutrophil cellular fractions to investigate the early events in ionomycin-triggered NETosis. We found that before ionomycin-stimulated neutrophils release NETs, profound biochemical changes occur in and around their nucleus, such as, cytoskeleton reorganization, nuclear redistribution of actin-remodeling related proteins, and citrullination of actin-ligand and nuclear structural proteins. Ionomycin-stimulated neutrophils rapidly lose their characteristic polymorphic nucleus, and these changes are promptly communicated to the extracellular environment through the secretion of proteins related to immune response. Therefore, our findings revealed key biochemical mediators in the early process that subsequently culminates with nuclear and cell membranes rupture, and extracellular DNA release.


Asunto(s)
Citrulinación , Trampas Extracelulares , Actinas/metabolismo , Ionomicina/farmacología , Ionomicina/metabolismo , Proteínas Nucleares/metabolismo , Ligandos , Proteómica , Neutrófilos/metabolismo , Trampas Extracelulares/metabolismo , Cromatina/metabolismo , ADN/metabolismo , Citoesqueleto/metabolismo
9.
Elife ; 122023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36942942

RESUMEN

The acrosome is a membranous organelle positioned in the anterior portion of the sperm head and is essential for male fertility. Acrosome biogenesis requires the dynamic cytoskeletal shuttling of vesicles toward nascent acrosome which is regulated by a series of accessory proteins. However, much remains unknown about the molecular basis underlying this process. Here, we generated Ssh2 knockout (KO) mice and HA-tagged Ssh2 knock-in (KI) mice to define the functions of Slingshot phosphatase 2 (SSH2) in spermatogenesis and demonstrated that as a regulator of actin remodeling, SSH2 is essential for acrosome biogenesis and male fertility. In Ssh2 KO males, spermatogenesis was arrested at the early spermatid stage with increased apoptotic index and the impaired acrosome biogenesis was characterized by defective transport/fusion of proacrosomal vesicles. Moreover, disorganized F-actin structures accompanied by excessive phosphorylation of COFILIN were observed in the testes of Ssh2 KO mice. Collectively, our data reveal a modulatory role for SSH2 in acrosome biogenesis through COFILIN-mediated actin remodeling and the indispensability of this phosphatase in male fertility in mice.


Asunto(s)
Acrosoma , Actinas , Masculino , Ratones , Animales , Acrosoma/metabolismo , Actinas/metabolismo , Semen/metabolismo , Espermatogénesis , Ratones Noqueados , Factores Despolimerizantes de la Actina/metabolismo
10.
Microbiol Spectr ; : e0518922, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36779726

RESUMEN

The actin rearrangement-inducing factor 1 (Arif-1) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an early viral protein that manipulates the actin cytoskeleton of host insect cells. Arif-1 is conserved among alphabaculoviruses and is responsible for the accumulation of F-actin at the plasma membrane during the early phase of infection. However, the molecular mechanism underlying Arif-1-induced cortical actin accumulation is still open. Recent studies have demonstrated the formation of invadosome-like structures induced by Arif-1, suggesting a function in systemic virus spread. Here, we addressed whether Arif-1 is able to manipulate the actin cytoskeleton of mammalian cells comparably to insect cells. Strikingly, transient overexpression of Arif-1 in B16-F1 mouse melanoma cells revealed pronounced F-actin remodeling. Actin assembly was increased, and intense membrane ruffling occurred at the expense of substrate-associated lamellipodia. Deletion mutagenesis studies of Arif-1 confirmed that the C-terminal cytoplasmic region was not sufficient to induce F-actin remodeling, supporting that the transmembrane region for Arif-1 function is also required in mammalian cells. The similarities between Arif-1-induced actin remodeling in insect and mammalian cells indicate that Arif-1 function relies on conserved cellular interaction partners and signal transduction pathways, thus providing an experimental tool to elucidate the underlying mechanism. IMPORTANCE Virus-induced changes of the host cell cytoskeleton play a pivotal role in the pathogenesis of viral infections. The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is known for intervening with the regulation of the host actin cytoskeleton in a wide manner throughout the infection cycle. The actin rearrangement-inducing factor 1 (Arif-1) is a viral protein that causes actin rearrangement during the early phase of AcMNPV infection. Here, we performed overexpression studies of Arif-1 in mammalian cells to establish an experimental tool that allows elucidation of the mechanism underlying the Arif-1-induced remodeling of actin dynamics in a well-characterized and genetically accessible system.

11.
J Biol Chem ; 299(4): 103045, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36822326

RESUMEN

Glucose-stimulated insulin secretion of pancreatic ß cells is essential in maintaining glucose homeostasis. Recent evidence suggests that the Nephrin-mediated intercellular junction between ß cells is implicated in the regulation of insulin secretion. However, the underlying mechanisms are only partially characterized. Herein we report that GIV is a signaling mediator coordinating glucose-stimulated Nephrin phosphorylation and endocytosis with insulin secretion. We demonstrate that GIV is expressed in mouse islets and cultured ß cells. The loss of function study suggests that GIV is essential for the second phase of glucose-stimulated insulin secretion. Next, we demonstrate that GIV mediates the high glucose-stimulated tyrosine phosphorylation of GIV and Nephrin by recruiting Src kinase, which leads to the endocytosis of Nephrin. Subsequently, the glucose-induced GIV/Nephrin/Src signaling events trigger downstream Akt phosphorylation, which activates Rac1-mediated cytoskeleton reorganization, allowing insulin secretory granules to access the plasma membrane for the second-phase secretion. Finally, we found that GIV is downregulated in the islets isolated from diabetic mice, and rescue of GIV ameliorates the ß-cell dysfunction to restore the glucose-stimulated insulin secretion. We conclude that the GIV/Nephrin/Akt signaling axis is vital to regulate glucose-stimulated insulin secretion. This mechanism might be further targeted for therapeutic intervention of diabetic mellitus.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Islotes Pancreáticos , Animales , Ratones , Diabetes Mellitus Experimental/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Transporte Vesicular/metabolismo
12.
Cell Rep ; 42(1): 111986, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640348

RESUMEN

Membraneless condensates, such as stress granules (SGs) and processing bodies (P-bodies), have attracted wide attention due to their unique feature of rapid response to stress without first requiring nuclear feedback. In this study, we identify diaphanous-related formin 3 (DIAPH3), an actin nucleator, as a scaffold protein to initiate liquid-liquid phase separation (LLPS) and form abundant cytosolic phase-separated DIAPH3 granules (D-granules) in mammalian cells such as HeLa, HEK293, and fibroblasts under various stress conditions. Neither mRNAs nor known stress-associated condensate markers, such as G3BP1, G3BP2, and TIA1 for SGs and DCP1A for P-bodies, are detected in D-granules. Using overexpression and knockout of DIAPH3, pharmacological interventions, and optogenetics, we further demonstrate that stress-induced D-granules spatially sequester DIAPH3 within the condensation to inhibit the assembly of actin filaments in filopodia. This study reveals that D-granules formed by LLPS act as a regulatory hub for actin cytoskeletal remodeling in response to stress.


Asunto(s)
Actinas , ADN Helicasas , Animales , Humanos , Células HEK293 , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Citoesqueleto de Actina , Mamíferos , Forminas
13.
Front Microbiol ; 13: 986396, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36016797

RESUMEN

Selected lactic acid bacteria can stimulate macrophages and dendritic cells to secrete IL-12, which plays a key role in activating innate and cellular immunity. In this study, we investigated the roles of cell wall teichoic acids (WTAs) displayed on whole intact cell walls (ICWs) of Lactiplantibacillus plantarum in activation of mouse macrophages. ICWs were prepared from whole bacterial cells of several lactobacilli without physical disruption, and thus retaining the overall shapes of the bacteria. WTA-displaying ICWs of several L. plantarum strains, but not WTA-lacking ICWs of strains of other lactobacilli, elicited IL-12 secretion from mouse bone marrow-derived macrophages (BMMs) and mouse macrophage-like J774.1 cells. The ability of the ICWs of L. plantarum to induce IL-12 secretion was abolished by selective chemical elimination of WTAs from ICWs, but was preserved by selective removal of cell wall glycopolymers other than WTAs. BMMs prepared from TLR2- or TLR4-deficient mouse could secret IL-12 upon stimulation with ICWs of L. plantarum and a MyD88 dimerization inhibitor did not affect ICW-mediated IL-12 secretion. WTA-displaying ICWs, but not WTA-lacking ICWs, were ingested in the cells within 30 min. Treatment with inhibitors of actin polymerization abolished IL-12 secretion in response to ICW stimulation and diminished ingestion of ICWs. When overall shapes of ICWs of L. plantarum were physically disrupted, the disrupted ICWs (DCWs) failed to induce IL-12 secretion. However, DCWs and soluble WTAs inhibited ICW-mediated IL-12 secretion from macrophages. Taken together, these results show that WTA-displaying ICWs of L. plantarum can elicit IL-12 production from macrophages via actin-dependent phagocytosis but TLR2 signaling axis independent pathway. WTAs displayed on ICWs are key molecules in the elicitation of IL-12 secretion, and the sizes and shapes of the ICWs have an impact on actin remodeling and subsequent IL-12 production.

14.
Proteomics ; 22(18): e2100416, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35776780

RESUMEN

Keratoconus (KC) is non-inflammatory, bilateral progressive corneal ectasia, and a disease of established biomechanical instability. The etiology of KC is believed to be multifactorial. Although previous studies gained insight into the understanding of the disease, little is known thus far on global protein phosphorylation changes in keratoconus. We performed phosphoproteome analysis of corneal epithelium from control (N = 5) and KC patients. Tandem mass tag (TMT) multiplexing technology along with immobilized metal affinity chromatography (IMAC) were used for the phosphopeptides enrichment and quantitation. Enriched peptides were analyzed on Orbitrap Fusion Tribrid mass spectrometer. This leads to the identification of 2939 unique phosphopeptides derived from 1270 proteins. We observed significant differential phosphorylation of 591 phosphopeptides corresponding to 375 proteins. Our results provide first phosphoproteomic signature of the keratoconus disease and identified dysregulated signaling pathways that can be targeted for therapy in future studies.


Asunto(s)
Epitelio Corneal , Queratocono , Cromatografía de Afinidad/métodos , Epitelio Corneal/metabolismo , Humanos , Queratocono/metabolismo , Fosfopéptidos/metabolismo , Fosfoproteínas/metabolismo
15.
J Biol Chem ; 298(8): 102240, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35809641

RESUMEN

The ß-cells of the islets of Langerhans are the sole producers of insulin in the human body. In response to rising glucose levels, insulin-containing vesicles inside ß-cells fuse with the plasma membrane and release their cargo. However, the mechanisms regulating this process are only partly understood. Previous evidence indicated reductions in α-catenin elevate insulin release, while reductions in ß-catenin decrease insulin release. α- and ß-catenin contribute to cellular regulation in a range of ways but one is as members of the adherens junction complex. Therefore, we investigated the effects of adherens junctions on insulin release. We show in INS-1E ß-cells knockdown of either E- or N-cadherin had only small effects on insulin secretion, but simultaneous knockdown of both cadherins resulted in a significant increase in basal insulin release to the same level as glucose-stimulated release. This double knockdown also significantly attenuated levels of p120 catenin, a cadherin-binding partner involved in regulating cadherin turnover. Conversely, reducing p120 catenin levels with siRNA destabilized both E- and N-cadherin, and this was also associated with an increase in levels of insulin secreted from INS-1E cells. Furthermore, there were also changes in these cells consistent with higher insulin release, namely reductions in levels of F-actin and increased intracellular free Ca2+ levels in response to KCl-induced membrane depolarization. Taken together, these data provide evidence that adherens junctions play important roles in retaining a pool of insulin secretory vesicles within the cell and establish a role for p120 catenin in regulating this process.


Asunto(s)
Uniones Adherentes , Cateninas , Células Secretoras de Insulina , Insulina , Vesículas Secretoras , Uniones Adherentes/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Proteínas Portadoras/metabolismo , Cateninas/genética , Cateninas/metabolismo , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Vesículas Secretoras/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Catenina delta
16.
J Exp Clin Cancer Res ; 41(1): 209, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35765111

RESUMEN

BACKGROUND: Abnormal proliferation and migration of cells are hallmarks of cancer initiation and malignancy. Asparagine endopeptidase (AEP) has specific substrate cleavage ability and plays a pro-cancer role in a variety of cancers. However, the underlying mechanism of AEP in cancer proliferation and migration still remains unclear. METHODS: Co-immunoprecipitation and following mass spectrometry were used to identify the substrate of AEP. Western blotting was applied to measure the expression of proteins. Single cell/nuclear-sequences were done to detect the heterogeneous expression of Tmod3 in tumor tissues. CCK-8 assay, flow cytometry assays, colony formation assay, Transwell assay and scratch wound-healing assay were performed as cellular functional experiments. Mouse intracranial xenograft tumors were studied in in vivo experiments. RESULTS: Here we showed that AEP cleaved a ubiquitous cytoskeleton regulatory protein, tropomodulin-3 (Tmod3) at asparagine 157 (N157) and produced two functional truncations (tTmod3-N and tTmod3-C). Truncated Tmod3 was detected in diverse tumors and was found to be associated with poor prognosis of high-grade glioma. Functional studies showed that tTmod3-N and tTmod3-C enhanced cancer cell migration and proliferation, respectively. Animal models further revealed the tumor-promoting effects of AEP truncated Tmod3 in vivo. Mechanistically, tTmod3-N was enriched in the cell cortex and competitively inhibited the pointed-end capping effect of wild-type Tmod3 on filamentous actin (F-actin), leading to actin remodeling. tTmod3-C translocated to the nucleus, where it interacted with Staphylococcal Nuclease And Tudor Domain Containing 1 (SND1), facilitating the transcription of Ras Homolog Family Member A/Cyclin Dependent Kinases (RhoA/CDKs). CONCLUSION: The newly identified AEP-Tmod3 protease signaling axis is a novel "dual-regulation" mechanism of tumor cell proliferation and migration. Our work provides new clues to the underlying mechanisms of cancer proliferation and invasive progression and evidence for targeting AEP or Tmod3 for therapy.


Asunto(s)
Actinas , Neoplasias Encefálicas , Cisteína Endopeptidasas , Endonucleasas , Glioma , Tropomodulina , Proteína de Unión al GTP rhoA , Actinas/metabolismo , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Quinasas Ciclina-Dependientes/metabolismo , Cisteína Endopeptidasas/metabolismo , Proteínas del Citoesqueleto , Endonucleasas/metabolismo , Glioma/metabolismo , Glioma/patología , Xenoinjertos , Humanos , Ratones , Transducción de Señal , Tropomodulina/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
17.
Am J Physiol Endocrinol Metab ; 323(2): E133-E144, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35723227

RESUMEN

Mammalian target of rapamycin (mTOR) kinase is an essential hub where nutrients and growth factors converge to control cellular metabolism. mTOR interacts with different accessory proteins to form complexes 1 and 2 (mTORC), and each complex has different intracellular targets. Although mTORC1's role in ß-cells has been extensively studied, less is known about mTORC2's function in ß-cells. Here, we show that mice with constitutive and inducible ß-cell-specific deletion of RICTOR (ßRicKO and ißRicKO mice, respectively) are glucose intolerant due to impaired insulin secretion when glucose is injected intraperitoneally. Decreased insulin secretion in ßRicKO islets was caused by abnormal actin polymerization. Interestingly, when glucose was administered orally, no difference in glucose homeostasis and insulin secretion were observed, suggesting that incretins are counteracting the mTORC2 deficiency. Mechanistically, glucagon-like peptide-1 (GLP-1), but not gastric inhibitory polypeptide (GIP), rescued insulin secretion in vivo and in vitro by improving actin polymerization in ßRicKO islets. In conclusion, mTORC2 regulates glucose-stimulated insulin secretion by promoting actin filament remodeling.NEW & NOTEWORTHY The current studies uncover a novel mechanism linking mTORC2 signaling to glucose-stimulated insulin secretion by modulation of the actin filaments. This work also underscores the important role of GLP-1 in rescuing defects in insulin secretion by modulating actin polymerization and suggests that this effect is independent of mTORC2 signaling.


Asunto(s)
Actinas , Insulina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Insulina/metabolismo , Secreción de Insulina , Mamíferos/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Serina-Treonina Quinasas TOR/metabolismo
18.
Exp Cell Res ; 417(1): 113196, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35561787

RESUMEN

Glioblastoma multiforme (GBM) is well known as a highly aggressive brain tumor subtype. Here, we show that overexpression (OE) of dematin actin-binding protein (DMTN) inhibits GBM proliferation and invasion by affecting cell cycle regulation and actin remodeling, respectively. RT-qPCR, western blotting, and immunohistochemical (IHC) staining demonstrated a significant reduction in DMTN expression in gliomas, especially in high-grade gliomas (HGG) compared with normal brains, which correlates with worse survival in HGG patients. Functional studies revealed inhibitory effects of DMTN on tumor proliferation and migratory capacities. The attenuation in tumor proliferative ability upon DMTN OE was accompanied by RhoA suppression and CDK1, CDK2, CDK4, and cyclin D1 downregulation, while RhoA rescue restored the proliferative phenotype. Meanwhile, overexpression of DMTN produced profoundly disorganized stress fibers, which led to impaired tumor invasion. Furthermore, DMTN overexpression produced substantial suppression of tumor growth upon subcutaneous and intracranial implantation in mice, and this was accompanied by significantly reduced vinculin expression and Ki67 positivity. Taken together, these findings demonstrate the role of DMTN in regulating GBM cell proliferation, actin cytoskeleton, and cell morphology and identify DMTN as a vital tumor suppressor in GBM progression.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Neoplasias Encefálicas , Glioblastoma , Proteínas de Microfilamentos/metabolismo , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Quinasas Ciclina-Dependientes/metabolismo , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
19.
Cell Signal ; 93: 110294, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35218908

RESUMEN

BACKGROUND AND AIMS: Inflammatory bowel diseases (IBD) result in chronic inflammation of the gastrointestinal tract. Genetic studies have shown that the GPR65 gene, as well as its missense coding variant, GPR65*Ile231Leu, is associated with IBD. We aimed to define the signalling and biological pathways downstream of GPR65 activation and evaluate the impact of GPR65*231Leu on these. METHODS: We used HEK 293 cells stably expressing GPR65 and deficient for either Gαs, Gαq/11 or Gα12/13, to define GPR65 signalling pathways, IBD patient biopsies and a panel of human tissues, primary immune cells and cell lines to determine biologic context, and genetic modulation of human THP-1-derived macrophages to examine the impact of GPR65 in bacterial phagocytosis and NLRP3 inflammasome activation. RESULTS: We confirmed that GPR65 signals via the Gαs pathway, leading to cAMP accumulation. GPR65 can also signal via the Gα12/13 pathway leading to formation of stress fibers, actin remodeling and RhoA activation; all impaired by the IBD-associated GPR65*231Leu allele. Gene expression profiling revealed greater expression of GPR65 in biopsies from inflamed compared to non-inflamed tissues from IBD patients or control individuals, potentially explained by infiltration of inflammatory immune cells. Decreased GPR65 expression in THP-1-derived macrophages leads to impaired bacterial phagocytosis, increased NLRP3 inflammasome activation and IL-1ß secretion in response to an inflammatory stimulus. CONCLUSIONS: We demonstrate that GPR65 exerts its effects through Gαs- and Gα12/13-mediated pathways, that the IBD-associated GPR65*231Leu allele has compromised interactions with Gα12/13 and that KD of GPR65 leads to impaired bacterial phagocytosis and increased inflammatory signalling via the NLRP3 inflammasome. This work identifies a target for development of small molecule therapies.


Asunto(s)
Inflamasomas , Enfermedades Inflamatorias del Intestino , Receptores Acoplados a Proteínas G/metabolismo , Células HEK293 , Humanos , Inflamasomas/metabolismo , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Interleucina-1beta , Proteína con Dominio Pirina 3 de la Familia NLR , Receptores Acoplados a Proteínas G/genética
20.
Mol Oncol ; 16(2): 368-387, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33960104

RESUMEN

C1q tumor necrosis factor-related peptide 8 (CTRP8) is the least studied member of the C1Q-TNF-related peptide family. We identified CTRP8 as a ligand of the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1) in glioblastoma multiforme (GBM). The CTRP8-RXFP1 ligand-receptor system protects human GBM cells against the DNA-alkylating damage-inducing temozolomide (TMZ), the drug of choice for the treatment of patients with GBM. The DNA protective role of CTRP8 was dependent on a functional RXFP1-STAT3 signaling cascade and targeted the monofunctional glycosylase N-methylpurine DNA glycosylase (MPG) for more efficient base excision repair of TMZ-induced DNA-damaged sites. CTRP8 also improved the survival of GBM cells by upregulating anti-apoptotic BCl-2 and BCL-XL. Here, we have identified Janus-activated kinase 3 (JAK3) as a novel member of a novel CTRP8-RXFP1-JAK3-STAT3 signaling cascade that caused an increase in cellular protein content and activity of the small Rho GTPase Cdc42. This is associated with significant F-actin remodeling and increased GBM motility. Cdc42 was critically important for the upregulation of the actin nucleation complex N-Wiskott-Aldrich syndrome protein/Arp3/4 and actin elongation factor profilin-1. The activation of the RXFP1-JAK3-STAT3-Cdc42 axis by both RXFP1 agonists, CTRP8 and relaxin-2, caused extensive filopodia formation. This coincided with enhanced activity of ezrin, a key factor in tethering F-actin to the plasma membrane, and inhibition of the actin filament severing activity of cofilin. The F-actin remodeling and pro-migratory activities promoted by the novel RXFP1-JAK3-STAT3-Cdc42 axis were blocked by JAK3 inhibitor tofacitinib and STAT3 inhibitor STAT3 inhibitor VI. This provides a new rationale for the design of JAK3 and STAT3 inhibitors with better brain permeability for clinical treatment of the pervasive brain invasiveness of GBM.


Asunto(s)
Actinas/metabolismo , Adiponectina/metabolismo , Neoplasias Encefálicas/patología , Movimiento Celular , Glioblastoma/patología , Janus Quinasa 3/metabolismo , Seudópodos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Glioblastoma/metabolismo , Humanos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA