Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 13(8)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37627312

RESUMEN

The eukaryotic actin cytoskeleton comprises the protein itself in its monomeric and filamentous forms, G- and F-actin, as well as multiple interaction partners (actin-binding proteins, ABPs). This gives rise to a temporally and spatially controlled, dynamic network, eliciting a plethora of motility-associated processes. To interfere with the complex inter- and intracellular interactions the actin cytoskeleton confers, small molecular inhibitors have been used, foremost of all to study the relevance of actin filaments and their turnover for various cellular processes. The most prominent inhibitors act by, e.g., sequestering monomers or by interfering with the polymerization of new filaments and the elongation of existing filaments. Among these inhibitors used as tool compounds are the cytochalasans, fungal secondary metabolites known for decades and exploited for their F-actin polymerization inhibitory capabilities. In spite of their application as tool compounds for decades, comprehensive data are lacking that explain (i) how the structural deviances of the more than 400 cytochalasans described to date influence their bioactivity mechanistically and (ii) how the intricate network of ABPs reacts (or adapts) to cytochalasan binding. This review thus aims to summarize the information available concerning the structural features of cytochalasans and their influence on the described activities on cell morphology and actin cytoskeleton organization in eukaryotic cells.


Asunto(s)
Citoesqueleto de Actina , Actinas , Fenómenos Fisiológicos Celulares , Citoesqueleto , Citocalasinas/farmacología
2.
J Fungi (Basel) ; 8(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35736043

RESUMEN

Laying the groundwork on preliminary structure-activity relationship study relating to the disruptive activity of cytochalasan derivatives on mammalian cell actin cytoskeleton, we furthered our study on the cytochalasans of the Dothideomycetes fungus, Sparticola triseptata. A new cytochalasan analog triseptatin (1), along with the previously described cytochalasans deoxaphomin B (2) and cytochalasin B (3), and polyketide derivatives cis-4-hydroxy-6-deoxyscytalone (4) and 6-hydroxymellein (5) were isolated from the rice culture of S. triseptata. The structure of 1 was elucidated through NMR spectroscopic analysis and high-resolution mass spectrometry (HR-ESI-MS). The relative and absolute configurations were established through analysis of NOESY spectroscopic data and later correlated with experimental electronic circular dichroism and time-dependent density functional theory (ECD-TDDFT) computational analysis. Compounds 1 and 2 showed cytotoxic activities against seven mammalian cell lines (L929, KB3.1, MCF-7, A549, PC-3, SKOV-3, and A431) and antiproliferative effects against the myeloid leukemia K-562 cancer cell line. Both 1 and 2 were shown to possess properties inhibiting the F-actin network, prompting further hypotheses that should to be tested in the future to enable a well-resolved concept of the structural implications determining the bioactivity of the cytochalasin backbone against F-actin.

3.
ChemMedChem ; 16(4): 679-693, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32929894

RESUMEN

Malarial parasites employ actin dynamics for motility, and any disruption to these dynamics renders the parasites unable to effectively establish infection. Therefore, actin presents a potential target for malarial drug discovery, and naturally occurring actin inhibitors such as latrunculins are a promising starting point. However, the limited availability of the natural product and the laborious route for synthesis of latrunculins have hindered their potential development as drug candidates. In this regard, we recently described novel truncated latrunculins, with superior actin binding potency and selectivity towards P. falciparum actin than the canonical latrunculin B. In this paper, we further explore the truncated latrunculin core to summarize the SAR for inhibition of malaria motility. This study helps further understand the binding pattern of these analogues in order to develop them as drug candidates for malaria.


Asunto(s)
Antimaláricos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Malaria/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Tiazolidinas/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Compuestos Bicíclicos Heterocíclicos con Puentes/síntesis química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Tiazolidinas/síntesis química , Tiazolidinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA