Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Clin Med ; 13(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39274208

RESUMEN

Background: Bipolar disorder (BD) involves significant mood and energy shifts reflected in speech patterns. Detecting these patterns is crucial for diagnosis and monitoring, currently assessed subjectively. Advances in natural language processing offer opportunities to objectively analyze them. Aims: To (i) correlate speech features with manic-depressive symptom severity in BD, (ii) develop predictive models for diagnostic and treatment outcomes, and (iii) determine the most relevant speech features and tasks for these analyses. Methods: This naturalistic, observational study involved longitudinal audio recordings of BD patients at euthymia, during acute manic/depressive phases, and after-response. Patients participated in clinical evaluations, cognitive tasks, standard text readings, and storytelling. After automatic diarization and transcription, speech features, including acoustics, content, formal aspects, and emotionality, will be extracted. Statistical analyses will (i) correlate speech features with clinical scales, (ii) use lasso logistic regression to develop predictive models, and (iii) identify relevant speech features. Results: Audio recordings from 76 patients (24 manic, 21 depressed, 31 euthymic) were collected. The mean age was 46.0 ± 14.4 years, with 63.2% female. The mean YMRS score for manic patients was 22.9 ± 7.1, reducing to 5.3 ± 5.3 post-response. Depressed patients had a mean HDRS-17 score of 17.1 ± 4.4, decreasing to 3.3 ± 2.8 post-response. Euthymic patients had mean YMRS and HDRS-17 scores of 0.97 ± 1.4 and 3.9 ± 2.9, respectively. Following data pre-processing, including noise reduction and feature extraction, comprehensive statistical analyses will be conducted to explore correlations and develop predictive models. Conclusions: Automated speech analysis in BD could provide objective markers for psychopathological alterations, improving diagnosis, monitoring, and response prediction. This technology could identify subtle alterations, signaling early signs of relapse. Establishing standardized protocols is crucial for creating a global speech cohort, fostering collaboration, and advancing BD understanding.

2.
Front Psychol ; 15: 1403816, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39233888

RESUMEN

Understanding the challenges faced by second language (L2) learners in lexical tone perception is crucial for effective language acquisition. This study investigates the impact of exaggerated acoustic properties on facilitating Mandarin tone learning for English speakers. Using synthesized tone stimuli, we systematically manipulated pitch contours through three key modifications: expanding the fundamental frequency (F0), increasing F0 (female voice), and extending the overall duration. Our objectives were to assess the influence of F0 expansion, higher F0, longer duration, and varied syllables on Mandarin tone learning and generalization. Participants engaged in a non-adaptive trial-by-trial tone identification task. Mixed-effects logistic regression modeling was used to analyze accuracy across learning phases, acoustic factors, and tones. Findings reveal improvements in accuracy from training to testing and generalization phases, indicating the effectiveness of perceptual training to tone perception for adult English speakers. Tone 1 emerged as the easiest to perceive, while Tone 3 posed the most challenge, consistent with established hierarchies of tonal acquisition difficulty. Analysis of acoustic factors highlighted tone-specific effects. Expanded F0 was beneficial for the identification of Tone 2 and Tone 3 but posed challenges for Tone 1 and Tone 4. Additionally, longer durations also exhibited varied effects across tones, aiding in the identification of Tone 3 and Tone 4 but hindering Tone 1 identification. The higher F0 was advantageous for Tone 2 but disadvantageous for Tone 3. Furthermore, the syllable ma facilitated the identification of Tone 1 and Tone 2 but not for Tone 3 and Tone 4. These findings enhance our understanding of the role of acoustic properties in L2 tone perception and have implications for the design of effective training programs for second language acquisition.

3.
Materials (Basel) ; 17(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38591429

RESUMEN

Sound-absorbing panels are widely used in the acoustic design of aircraft parts, buildings and vehicles as well as in sound insulation and absorption in areas with heavy traffic. This paper studied the acoustic properties of sound-absorbing panels manufactured with three nozzle diameters (0.4 mm, 0.6 mm and 0.8 mm) by 3D printing from three types of polylactic acid filaments (Grey Tough PLA; Black PLA Pro; Natural PLA) and with six internal configurations with labyrinthine zigzag channels (Z1 and Z2). The absorption coefficient of the sample with the Z2 pattern, a 5.33 mm height, a 0.6 mm nozzle diameter and with Black PLA Pro showed the maximum value (α = 0.93) for the nozzle diameter of 0.6 mm. Next in position were the three samples with the Z1 pattern (4 mm height) made from all three materials used and printed with a nozzle diameter of 0.4 mm with a sound absorption coefficient value (α = 0.91) at 500 Hz. The highest value of the sound transmission loss (56 dB) was found for the sample printed with a nozzle size of 0.8 mm with the Z2 pattern (8 mm height) and with Black PLA Pro. The extruded material, the nozzle diameter and the internal configuration had a significant impact on the acoustic performance of the 3D-printed samples.

4.
Adv Sci (Weinh) ; 11(22): e2400271, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38647427

RESUMEN

Tissue-mimicking phantoms are valuable tools that aid in improving the equipment and training available to medical professionals. However, current phantoms possess limited utility due to their inability to precisely simulate multiple physical properties simultaneously, which is crucial for achieving a system understanding of dynamic human tissues. In this work, novel materials design and fabrication processes to produce various tissue-mimicking materials (TMMs) for skin, adipose, muscle, and soft tissue at a human scale are developed. Target properties (Young's modulus, density, speed of sound, and acoustic attenuation) are first defined for each TMM based on literature. Each TMM recipe is developed, associated mechanical and acoustic properties are characterized, and the TMMs are confirmed to have comparable mechanical and acoustic properties with the corresponding human tissues. Furthermore, a novel sacrificial core to fabricate a hollow, ellipsoid-shaped bladder phantom complete with inlet and outlet tubes, which allow liquids to flow through and expand this phantom, is adopted. This dynamic bladder phantom with realistic mechanical and acoustic properties to human tissues in combination with the developed skin, soft tissue, and subcutaneous adipose tissue TMMs, culminates in a human scale torso tank and electro-mechanical system that can be systematically utilized for characterizing various medical imaging devices.


Asunto(s)
Fantasmas de Imagen , Humanos , Materiales Biomiméticos/química , Ultrasonografía/métodos , Ultrasonografía/instrumentación , Acústica/instrumentación , Diseño de Equipo/métodos , Módulo de Elasticidad
5.
Front Bioeng Biotechnol ; 12: 1276143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38456002

RESUMEN

Background: The choice of gelatin as the phantom material is underpinned by several key advantages it offers over other materials in the context of ultrasonic applications. Gelatin exhibits spatial and temporal uniformity, which is essential in creating reliable tissue-mimicking phantoms. Its stability ensures that the phantom's properties remain consistent over time, while its flexibility allows for customization to match the acoustic characteristics of specific tissues, in addition to its low levels of ultrasound scattering. These attributes collectively make gelatin a preferred choice for fabricating phantoms in ultrasound-related research. Methods: We developed gelatin-based phantoms with adjustable parameters and conducted high-resolution measurements of ultrasound wave attenuation when interacting with the gelatin phantoms. We utilized a motorized acoustic system designed for 3D acoustic mapping. Mechanical evaluation of phantom elasticity was performed using unconfined compression tests. We particularly examined how varying gelatin concentration influenced ultrasound maximal intensity and subsequent acoustic attenuation across the acoustic profile. To validate our findings, we conducted computational simulations to compare our data with predicted acoustic outcomes. Results: Our results demonstrated high-resolution mapping of ultrasound waves in both gelatin-based phantoms and plain fluid environments. Following an increase in the gelatin concentration, the maximum intensity dropped by 30% and 48% with the 5 MHz and 1 MHz frequencies respectively, while the attenuation coefficient increased, with 67% more attenuation at the 1 MHz frequency recorded at the highest concentration. The size of the focal areas increased systematically as a function of increasing applied voltage and duty cycle yet decreased as a function of increased ultrasonic frequency. Simulation results verified the experimental results with less than 10% deviation. Conclusion: We developed gelatin-based ultrasound phantoms as a reliable and reproducible tool for examining the acoustic and mechanical attenuations taking place as a function of increased tissue elasticity and stiffness. Our experimental measurements and simulations gave insight into the potential use of such phantoms for mimicking soft tissue properties.

6.
Atten Percept Psychophys ; 86(2): 381-391, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177945

RESUMEN

Studies of auditory object perception claim that semantic properties dominate acoustic properties in determining identification accuracy. Yet the direction of the semantic effect is mixed, with some studies showing an advantage for detecting incongruent sounds and others reporting a congruent sound advantage. Here we examine the role of the participant's attentional set when identifying auditory objects in naturalistic soundscapes. We varied the acoustic and semantic properties of the sounds orthogonally in two experiments. In Experiment 1 participants tuned their attention broadly to detect any change between two successive soundscapes (e.g., two restaurant soundscapes, with and without a child coughing). In Experiment 2 they tuned attention more narrowly to a probe presented after a soundscape (e.g., a restaurant soundscape with a child coughing, followed by the coughing sound alone). In both experiments, semantic relations between the objects and backgrounds helped to disambiguate objects that blended acoustically with the background. When attending globally (Experiment 1), objects that were acoustically similar yet semantically incongruent tended to be missed (e.g., bouncing basketball on a construction site), as though camouflaged by the gist of the soundscape. When attending locally (Experiment 2), semantically congruent foil objects led to false positive reports under acoustically similar conditions (hammering sounds on a construction site), as though the gist of the soundscape contributed to their plausible inclusion. In summary, although attentional set had a strong influence on the specific kinds of errors made, both results pointed to participants using a semantically congruent high-level schema to report the sounds they heard.


Asunto(s)
Atención , Percepción Auditiva , Niño , Humanos , Estimulación Acústica/métodos , Acústica , Semántica
7.
Materials (Basel) ; 17(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38255571

RESUMEN

The global population is expected to increase by nearly 2 billion individuals over the next three decades, leading to a significant surge in waste generation and environmental challenges. To mitigate these challenges, there is a need to develop sustainable solutions that can effectively manage waste generation and promote a circular economy. Mycelium-based composites (MBCs) are being developed for various applications, including packaging, architectural designs, sound absorption, and insulation. MBCs are made by combining fungal mycelium with organic substrates, using the mycelium as a natural adhesive. Mycelium, the vegetative part of fungi, can be grown on various organic feedstocks and functionalized into a range of diverse material types that are biobased and thus more sustainable in their production, use, and recycling. This work aims to obtain mycelium-based composites with acoustic absorption properties, using coffee grounds and agricultural waste as raw materials. The topic approached presents a new method of recovering spent coffee grounds that does not involve high production costs and reduces two current environmental problems: noise pollution and abundant waste. Measurements of the normal-incidence sound absorption coefficient were presented and analyzed. Mycelium-based composites offer an innovative, sustainable approach to developing bio-composite sound-absorbing surfaces for interior fittings. The material by Ganoderma lucidum exhibits exceptional sound-absorbing properties at frequencies below 700 Hz, which is a crucial aspect of creating sound-absorbing materials that effectively absorb low-frequency sound waves. The modular construction system allows for a high degree of flexibility to adapt to short-term changes in the workplace.

8.
Int J Numer Method Biomed Eng ; 39(12): e3779, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37794748

RESUMEN

In this study, we investigated the impact of various simulated skull bone geometries on the determination of skull speed of sound and acoustic attenuation values via optimization using transmitted pressure amplitudes beyond the bone. Using the hybrid angular spectrum method (HAS), we simulated ultrasound transmission through four model sets of different geometries involving sandwiched layers of diploë and cortical bone in addition to three models generated from CT images of ex-vivo human skull-bones. We characterized cost-function solution spaces for each model and, using optimization, found that when a model possessed appreciable variations in resolvable layer thickness, the predefined attenuation coefficients could be found with low error (RMSE < 0.01 Np/cm). However, we identified a spatial frequency cutoff in the models' geometry beyond which the accuracy of the property determination begins to fail, depending on the frequency of the ultrasound source. There was a large increase in error of the attenuation coefficients determined by the optimization when the variations in layer thickness were above the identified spatial frequency cutoffs, or when the lateral variations across the model were relatively low in amplitude. For our limited sample of three CT-image derived bone models, the attenuation coefficients were determined successfully. The speed of sound values were determined with low error for all models (including the CT-image derived models) that were tested (RMSE < 0.4 m/s). These results illustrate that it is possible to determine the acoustic properties of two-component models when the internal bone structure is taken into account and the structure satisfies the spatial frequency constraints discussed.


Asunto(s)
Acústica , Cráneo , Humanos , Simulación por Computador , Cráneo/diagnóstico por imagen , Ultrasonografía/métodos , Cabeza
9.
Polymers (Basel) ; 15(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37765549

RESUMEN

The 3D printing process allows complex structures to be obtained with low environmental impact using biodegradable materials. This work aims to develop and acoustically characterize 3D-printed panels using three types of materials, each manufactured at five infill densities (20%, 40%, 60%, 80% and 100%) with three internal configurations based on circular, triangular, and corrugated profiles. The highest absorption coefficient values (α = 0.93) were obtained from the acoustic tests for the polylactic acid material with ground birch wood particles in the triangular configuration with an infill density of 40%. The triangular profile showed the best acoustic performance for the three types of materials analysed and, from the point of view of the mechanical tests, it was highlighted that the same triangular configuration presented the highest resistance both to compression (40 MPa) and to three-point bending (50 MPa). The 40% and 60% infill density gave the highest absorption coefficient values regardless of the material analyzed. The mechanical tests for compression and three-point bending showed higher strength values for samples manufactured from simple polylactic acid filament compared to samples manufactured from ground wood particles. The standard defects of 3D printing and the failure modes of the interior configurations of the 3D-printed samples could be observed from the microscopic analysis of the panels. Based on the acoustic results and the determined mechanical properties, one application area for these types of 3D-printed panels could be the automotive and aerospace industries.

10.
Int J Biol Macromol ; 253(Pt 5): 127119, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37776930

RESUMEN

Kenaf fiber has recently garnered exponential interest as reinforcement in composite materials across diverse industries owing to its superior mechanical attributes, ease of manufacture, and inherent biodegradability. In the discourse of this review, various methods of manufacturing kenaf/Polylactic acid (PLA) composites have been discussed meticulously, as delineated in recently published scientific literatures. This paper delves into the chemical modification of kenaf fiber, examining its consequential impact on tensile strength and thermal stability of the kenaf/PLA composites. Further, this review illuminates the role of innovative 3D printing techniques and fiber orientation in augmenting the mechanical robustness of the kenaf/PLA composites. Simultaneously, recent insightful explorations into the acoustic properties of the kenaf/PLA composites, underscoring their potential as sustainable alternative to conventional materials have been reviewed. Serving as a comprehensive repository of knowledge, this review paper holds immense value for researchers aiming to utilize the capabilities of kenaf fiber reinforced PLA composites.


Asunto(s)
Hibiscus , Industrias , Estructuras de las Plantas , Poliésteres
11.
Ultrasonics ; 134: 107081, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37413819

RESUMEN

The extraction process of crude oil requires addition of water, resulting in complex emulsions, in which the phases must be separated before the petrochemical processing starts. An ultrasonic cell may be used to determine in real time the water content in water-in-crude oil emulsions. The water content of emulsions can be related to parameters, such as propagation velocity, density and relative attenuation. The ultrasonic measurement cell developed here is composed of two piezoelectric transducers, two rexolite buffer rods, and a sample chamber. It is an inexpensive and robust system. The cell measures the parameters at different temperatures and flow conditions. The tests were performed using emulsions with water volume concentrations from 0% to 40%. The experimental results show that this cell is able to obtain more precise parameters, when compared to similar ultrasonic techniques. The data acquired in real time may be used to improve the emulsion separation, decreasing greenhouse gases and energy requirements.

12.
Ultrasound Med Biol ; 49(6): 1401-1407, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36878828

RESUMEN

OBJECTIVE: Histotripsy is an emerging non-invasive, non-ionizing and non-thermal focal tumor therapy. Although histotripsy targeting is currently based on ultrasound (US), other imaging modalities such as cone-beam computed tomography (CBCT) have recently been proposed to enable the treatment of tumors not visible on ultrasound. The objective of this study was to develop and evaluate a multi-modality phantom to facilitate the assessment of histotripsy treatment zones on both US and CBCT imaging. METHODS: Fifteen red blood cell phantoms composed of alternating layers with and without barium were manufactured. Spherical 25-mm histotripsy treatments were performed, and treatment zone size and location were measured on CBCT and ultrasound. Sound speed, impedance and attenuation were measured for each layer type. RESULTS: The average ± standard deviation signed difference between measured treatment diameters was 0.29 ± 1.25 mm. The Euclidean distance between measured treatment centers was 1.68 ± 0.63 mm. The sound speed in the different layers ranged from 1491 to 1514 m/s and was within typically reported soft tissue ranges (1480-1560 m/s). In all phantoms, histotripsy resulted in sharply delineated treatment zones, allowing segmentation in both modalities. CONCLUSION: These phantoms will aid in the development and validation of X-ray-based histotripsy targeting techniques, which promise to expand the scope of treatable lesions beyond only those visible on ultrasound.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Neoplasias , Humanos , Rayos X , Ultrasonografía , Fantasmas de Imagen , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Tomografía Computarizada de Haz Cónico
13.
Materials (Basel) ; 16(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36769986

RESUMEN

Rock breaking is one of the most basic issues in deep underground engineering. Water plays an important role in the rock response under microwave radiation. Consequently, microwave radiation experiments using red sandstone with different water contents were conducted. The damage characteristics and ultrasonic properties of red sandstone after microwave radiation were primarily investigated, and the representative conclusions were drawn as follows: With the increase in water content, the time of complete formation of the rupture surface of the rock sample gradually decreased, and the decreasing range gradually increased. When the fracture surface is completely formed, the samples with a higher water content have more powdery rock cuttings and less surface roughness. The damage degree of the samples does not increase significantly with the increase in the water content when the sample is radiated at the same time. As the microwave radiation time is increased, the damage degree of the sample will increase significantly. Through the ultrasonic velocity test, it can be suggested that the sample exhibits obvious zonal damage characteristics under the action of a microwave. Generally speaking, it is a very effective means of improving the degree of microwave attenuation of the rock by increasing the water content of the rock mass.

14.
Gels ; 8(11)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36421560

RESUMEN

This study aimed to determine the effect of different mixing rates and the addition of lecithin on the rheological mechanical, and acoustic properties of agar gels with the addition of canola oil. The mixing rate of the agar-oil mixture was changed from 10,000 to 13,000 rpm. Additionally, agar gels with the addition of lecithin from 1 to 5% were prepared. The frequency sweep test was used (at 4 and 50 °C) within the linear viscoelastic region (LVR) in oscillatory measurement. The agar-oil mixture was cooled from 80 to 10 °C, enabling the obtainment of the gelling temperature. Texture profile analysis (TPA) and compression tests, as well as the acoustic emission method, were applied to analyse the texture of the gels. The syneresis and stability of gels during storage were also measure. The increase in mixing rate in the case of agar gel with canola oil causes an increase in the elastic component of materials as well hardness and gumminess. Also, samples prepared with the higher mixing rate have more uniform and stable structures, with small bubbles. The increase in the concentration of lecithin is ineffective due to the formation of gels with a weak matrix and low hardness, gumminess, and stability during storage.

15.
Resour Conserv Recycl ; 186: 106509, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35959494

RESUMEN

The COVID-19 pandemic has changed people's habits, causing them to use large amounts of disposable items and exacerbating the already existing issue of pollution. One way to reduce the environmental impact of this shift in daily habits is to recycle these items, e.g. surgical masks that are the most common personal protective equipment against the virus, to produce panels for building applications. In this work, both the thermal and acoustical performance of such panels are evaluated using a small and a large scale investigation under real-world conditions. Small scale thermal tests are performed by means of the Hot Disk instrument while the acoustic investigations are performed by means of the impedance tube. Large scale tests are carried out in a reverberation chamber assessing both the heat flow passing through the wall and the acoustic absorption coefficient of the panels. Finally, the environmental impact of the innovative recycled panel is also investigated in a life cycle perspective. Overall, the material behavior scored well on these tests, suggesting that the proposed approach may be a good recycling method.

16.
Ultrasound Med Biol ; 48(8): 1468-1483, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35534303

RESUMEN

Anthropomorphic phantoms have been used to provide residents with training in ultrasound-guided breast biopsy. However, different individuals differ in terms of the acoustic properties and stiffness of their breast tissues. The individual differences should be reflected in the training breast phantoms. This study aimed to develop a breast tissue-mimicking phantom that offers realistic haptic feedback and ultrasound imaging during needle insertion. We investigated the tunability of the mechanical and acoustic properties of breast tissue-mimicking materials (TMMs) to emulate fat, glandular and tumor tissues. The Design of experiments (DOE) methods and physician's feedback were used to reveal the effect of component concentration on Young's modulus and acoustic properties of breast TMMs. Furthermore, the relative backscatter power of the TMM was studied to adjust the contrast between the simulated tumor and background glandular tissue. The results indicated that Young's moduli of TMMs could be altered by adjusting the concentrations of glycerol, agar and olive oil. Changing the concentration of silicon carbide in a TMM could enhance the contrast between the target and the background materials in an ultrasound image. Finally, a series of TMMs were suggested for fat, glandular, benign tumor and malignant tumor tissues. A breast phantom with a tunability appropriately reflecting the individual differences of breast tissues was developed.


Asunto(s)
Tecnología Háptica , Biopsia con Aguja , Retroalimentación , Humanos , Fantasmas de Imagen , Ultrasonografía
17.
Polymers (Basel) ; 14(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35335420

RESUMEN

Incorporation of residua into polymeric composites can be a successful approach to creating materials suitable for specific applications promoting a circular economy approach. Elastomeric (Ground Tire Rubber or GTR) and biogenic (chicken feathers or CFs) wastes were used to prepare polymeric composites in order to evaluate the tensile, acoustic and structural differences between both reinforcements. High-density polyethylene (HDPE), polypropylene (PP) and ethylene vinyl acetate (EVA) polymeric matrices were used. EVA matrix defines better compatibility with both reinforcement materials (GTR and CFs) than polyolefin matrices (HDPE and PP) as it has been corroborated by Fourier transform infrared spectroscopy (FTIR), termogravimetric analysis (TGA) and scanning electron microscopy (SEM). In addition, composites reinforced with GTR showed better acoustic properties than composites reinforced with CFs, due to the morphology of the reinforcing particles.

18.
Ultrasound Med Biol ; 48(6): 1095-1109, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35337687

RESUMEN

The thermal and mechanical effects induced in tissue by ultrasound can be exploited for therapeutic applications. Tissue-mimicking materials (TMMs), reflecting different soft tissue properties, are required for experimental evaluation of therapeutic potential. In the study described here, poly(vinyl alcohol) (PVA) hydrogels were characterized. Hydrogels prepared using different concentrations (5%-20% w/w) and molecular weights of PVA ± cellulose scatterers (2.5%-10% w/w) were characterized acoustically (sound speed, attenuation) as a function of temperature (25°C-45°C), thermally (thermal conductivity, specific heat capacity) and in terms of their cavitation thresholds. Results were compared with measurements in fresh sheep tissue (kidney, liver, spleen). Sound speed depended most strongly on PVA concentration, and attenuation, on cellulose content. For the range of formulations investigated, the PVA gel acoustic properties (sound speed: 1532 ± 17 to 1590 ± 9 m/s, attenuation coefficient: 0.08 ± 0.01 to 0.37 ± 0.02 dB/cm) fell within those measured in fresh tissue. Cavitation thresholds for 10% PVA hydrogels (50% occurrence: 4.1-5.4 MPa, 75% occurrence: 5.4-8.2 MPa) decreased with increasing cellulose content. In summary, PVA cellulose composite hydrogels may be suitable mimics of acoustic, cavitation and thermal properties of soft tissue for a number of therapeutic ultrasound applications.


Asunto(s)
Hidrogeles , Alcohol Polivinílico , Acústica , Animales , Celulosa , Ovinos , Temperatura
19.
Gels ; 8(2)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35200491

RESUMEN

This study aimed to determine the effect of the addition of apple juice concentrate (AJC) on the properties of agar gel and dried materials. Agar gels with the addition of apple juice concentrate in the range of 5-20% were prepared with or without the addition of maltodextrin. The gels were also soaked in the solution of AJC. The water content, water activity, densities, some mechanical and acoustic descriptors of gels, and the freeze-dried gels were analysed. The porosity and shrinkage of dried products were also investigated. The addition of AJC significantly changed mechanical and acoustic properties of gels. The hardness of gels decreased with a higher addition of concentrate. Dried samples with a lower concentration of sugars (the lower addition of AJC) were characterised by lower shrinkage and higher porosity, as well as crispness and glass transition temperature. The investigated mechanical and acoustic properties of dried gels showed the addition of apple concentrate at the level of 5% to agar solution was optimal.

20.
Clin Neurophysiol ; 135: 154-161, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35093702

RESUMEN

OBJECTIVE: The acoustic characteristics of stimuli influence the characteristics of the corresponding evoked potentials in healthy subjects. Own-name stimuli are used in clinical practice to assess the level of consciousness in intensive care units. The influence of the acoustic variability of these stimuli has never been evaluated. Here, we explored the influence of this variability on the characteristics of the subject's own name (SON) P300. METHODS: We retrospectively analyzed 251 disorders of consciousness patients from Lyon and Paris Hospitals who underwent an "own-name protocol". A reverse correlation analysis was performed to test for an association between acoustic properties of own-names stimuli used and the characteristics of the P300 wave observed. RESULTS: Own-names pronounced with increasing pitch prosody showed P300 responses 66 ms earlier than own-names that had a decreasing prosody [IC95% = 6.36; 125.9 ms]. CONCLUSIONS: Speech prosody of the stimuli in the "own name protocol" is associated with latencies differences of the P300 response among patients for whom these responses were observed. Further investigations are needed to confirm these results. SIGNIFICANCE: Speech prosody of the stimuli in the "own name protocol" is a non-negligible parameter, associated with P300 latency differences. Speech prosody should be standardized in SON P300 studies.


Asunto(s)
Coma/fisiopatología , Electroencefalografía/métodos , Potenciales Relacionados con Evento P300 , Percepción del Habla , Coma/diagnóstico , Electroencefalografía/normas , Femenino , Humanos , Masculino , Semántica , Acústica del Lenguaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA