Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Int J Biol Macromol ; 277(Pt 2): 134051, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39069038

RESUMEN

This comprehensive review focuses on spontaneous mutations that may occur during DNA replication, the fundamental process responsible for transferring genetic information. In 1963, Löwdin postulated that these mutations are primarily a result of proton transfer reactions within the hydrogen-bonded DNA base pairs. The single and double proton transfer reactions within the base pairs in DNA result in zwitterions and rare tautomers, respectively. For persistent mutations, these products must be generated at high rates and should be thermodynamically stable. This review covers the proton transfer reactions studied experimentally and computationally. The review also examines the influence of externally applied electric fields on the thermodynamics and kinetics of proton transfer reactions within DNA base pairs, and their biological implications.


Asunto(s)
Emparejamiento Base , ADN , Mutación Puntual , Protones , ADN/química , ADN/genética , Termodinámica , Electricidad , Enlace de Hidrógeno , Cinética
2.
J Mol Model ; 30(8): 284, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060804

RESUMEN

CONTEXT: This work reports structure-property correlations of 27 zwitterions Reichardt's types of zwitterions. Focuses are twofold, to see the (1) impacts of metamerism with Reichardt's vs Brooker's types of zwitterions and (2) impacts of monocyclic aromatic rings as bridges. All the molecules considered here have pyridinium (common acceptor: A) and p-phenylene-dicyanomethanide (common donor: D). Fundamental molecular properties like dipole moments (µ), polarizabilities (α), hyperpolarizabilities (ß), and adiabatic absorptions were computed only for the Reichardt types and compared with the literature reported respective Brooker's types of zwitterions. As an impact of metamerism, in general 2-3 times enhanced hyperpolarizabilities (ß) were observed for Reichardt's compared to Brooker's types. Exceptions were observed with some triazine bridges and furan bridge, where Brooker's types were found to be more efficient. As impacts of aromatic bridges, in general, 6-sevenfold enhanced ß compared to well-known traditional bridges and enhanced ß were observed compared to D-A directly connected zwitterion (benzene bridge: sixfold enhanced ß). Current findings show that the aromatic bridge control with Reichardt's types of zwitterions is more efficient and thus may be employed as an effective strategy for the designing of functional molecular chromophores for various other fundamental areas. METHODS: All computations were performed with Gaussian 09. Geometry optimizations and computations of fundamental properties were carried out with HF, B3LYP, CAM-B3LYP, and ωB97xD methodologies, with 6-31G(d,p) and aug-cc-pVDZ basis sets. For adiabatic excitations, computations were carried out using TDDFT and TDHF approaches. For the computations of the response properties (like the nonlinear optical responses), CPHF approach was used.

3.
Angew Chem Int Ed Engl ; : e202404890, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38923134

RESUMEN

The development of small organic molecules that can convert light energy into chemical energy to directly promote molecular transformation is of fundamental importance in chemical science. Herein, we report a zwitterionic acridinium amidate as a catalyst for the direct functionalization of aliphatic C-H bonds. This organic zwitterion absorbs visible light to generate the corresponding amidyl radical in the form of excited-state triplet diradical with prominent reactivity for hydrogen atom transfer to facilitate C-H alkylation with a high turnover number. The experimental and theoretical investigations revealed that the noncovalent interactions between the anionic amidate nitrogen and a pertinent hydrogen-bond donor, such as hexafluoroisopropanol, are crucial for ensuring the efficient generation of catalytically active species, thereby fully eliciting the distinct reactivity of the acridinium amidate as a photoinduced direct hydrogen atom transfer catalyst.

4.
Biomaterials ; 309: 122593, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38713971

RESUMEN

Posterior capsule opacification (PCO) is a predominant postoperative complication, often leading to visual impairment due to the aberrant proliferation and adhesion of lens epithelial cells (LECs) and protein precipitates subsequent to intraocular lens (IOL) implantation. To address this clinical issue, a foldable and antifouling sharp-edged IOL implant based on naturally-derived cellulose hydrogel is synthesized. The mechanical strength and transparency of the hydrogel is enhanced via repeated freeze-thaw (FT) cycles. The incorporated zwitterionic modifications can remarkably prevent the incidence of PCO by exhibiting proteins repulsion and cell anti-adhesion properties. The graft of dopamine onto both the haptic and the periphery of the posterior surface ensures the adhesion of the hydrogel to the posterior capsule and impedes the migration of LECs without compromising transparency. In in vivo study, the zwitterionic modified foldable hydrogel exhibits uveal and capsular biocompatibility synchronously with no signs of inflammatory response and prevent PCO formation, better than that of commercialized and PEG-modified IOL. With foldability, endurability, antifouling effect, and adhesive to posterior capsule, the reported hydrogel featuring heterogeneous surface design displays great potential to eradicate PCO and attain post-operative efficacy after cataract surgery.


Asunto(s)
Opacificación Capsular , Lentes Intraoculares , Opacificación Capsular/prevención & control , Animales , Hidrogeles/química , Conejos , Humanos , Congelación , Células Epiteliales/efectos de los fármacos , Materiales Biocompatibles/química
5.
Eur J Pharm Sci ; 199: 106819, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38815700

RESUMEN

Zwitterions contain both positively and negatively charged functional groups, resulting in an overall net neutral charge. Nevertheless, the membrane permeability of the zwitterionic form of a compound is assumed to be much lower than the permeability of the uncharged neutral form. Although a significant proportion of pharmaceuticals are zwitterionic, it has not been clear so far whether their permeability is dominated by the permeation of the zwitterionic or the neutral form, since neutral fractions are often quite low as compared to the zwitterionic fraction. This complicates the in silico prediction of the permeability of zwitterionic compounds. In this work, we re-evaluated existing in vitro permeability data from literature measured with Caco-2/MDCK cell assays, using more strict exclusion criteria for effects like diffusion limitation by the aqueous boundary layers, paracellular transport, active transport and retention. Using this re-evaluated data set, we show that extracted intrinsic permeabilities of the neutral fraction are well predicted by the solubility-diffusion model (RMSE = 1.21; n = 18) if the permeability of the zwitterionic species is assumed negligible. Our work thus suggests that only the neutral species is relevant for the membrane permeability of zwitterionic compounds, and that membrane permeability of zwitterionic compounds is indeed predictable by the solubility-diffusion model.


Asunto(s)
Permeabilidad de la Membrana Celular , Solubilidad , Células CACO-2 , Humanos , Difusión , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Animales , Células de Riñón Canino Madin Darby , Modelos Biológicos
6.
Adv Healthc Mater ; 13(19): e2304397, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38684223

RESUMEN

A zwitterionic injectable and degradable hydrogel based on hydrazide and aldehyde-functionalized [2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl)ammonium hydroxide (DMAPS) precursor polymers that can address practical in vivo needs is reported. Zwitterion fusion interactions between the zwitterionic precursor polymers create a secondary physically crosslinked network to enable much more rapid gelation than previously reported with other synthetic polymers, facilitating rapid gelation at much lower polymer concentrations or degrees of functionalization than previously accessible in addition to promoting zero swelling and long-term degradation responses and significantly stiffer mechanics than are typically accessed with previously reported low-viscosity precursor gelation systems. The hydrogels maintain the highly anti-fouling properties of conventional zwitterionic hydrogels against proteins, mammalian cells, and bacteria while also promoting anti-fibrotic tissue responses in vivo. Furthermore, the use of the hydrogels for effective delivery and subsequent controlled release of viable cells with tunable profiles both in vitro and in vivo is demonstrated, including the delivery of myoblasts in a mouse skeletal muscle defect model for reducing the time between injury and functional mobility recovery. The combination of the injectability, degradability, and tissue compatibility achieved offers the potential to expand the utility of zwitterionic hydrogels in minimally invasive therapeutic applications.


Asunto(s)
Hidrogeles , Hidrogeles/química , Hidrogeles/farmacología , Animales , Ratones , Regeneración/efectos de los fármacos , Reactivos de Enlaces Cruzados/química , Músculo Esquelético/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Mioblastos/efectos de los fármacos , Mioblastos/citología
7.
Adv Healthc Mater ; 13(18): e2304599, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38574242

RESUMEN

The major bottleneck in using polymer nanovectors for biomedical application, particularly those based on self-immolative poly(amino ester) (PAE), lies in their uncontrolled autodegradation at physiological pH before they can reach the intended target. Here, an elegant triblock-copolymer strategy is designed to stabilize the unstable PAE chains via zwitterionic interactions under physiological pH (pH 7.4) and precisely program their enzyme-responsive biodegradation specifically within the intracellular compartments, ensuring targeted delivery of the cargoes. To achieve this goal, biodegradable polycaprolactone (PCL) platform is chosen, and structure-engineered several di- and triblock architectures to arrive the precise macromolecular geometry. The hydrophobic-PCL core and hydrophilic anionic-PCL block at the periphery shield PAEs against autodegradation, thereby ensuring stability under physiological pH in PBS, FBS, cell culture medium and bloodstream. The clinical anticancer drug doxorubicin and deep-tissue penetrable near-infrared IR-780 biomarker is encapsulated to study their biological actions by in vitro live cancer cells and in vivo bioimaging in live animals. These zwitterions are biocompatible, nonhemolytic, and real-time in vitro live-cell confocal studies have confirmed their internalization and enzymatic biodegradation in the endo-lysosomal compartments to deliver the payload. In vivo bioimaging establishes their prolonged blood circulation for over 72 h, and the biodistribution analysis reveals the accumulation of nanoparticles predominantly in the excretory organs.


Asunto(s)
Doxorrubicina , Concentración de Iones de Hidrógeno , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Animales , Humanos , Polímeros/química , Poliésteres/química , Sistemas de Liberación de Medicamentos/métodos , Ratones , Nanopartículas/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Línea Celular Tumoral
8.
Adv Mater ; 36(25): e2400099, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38481340

RESUMEN

Multifunctional flexible electronics present tremendous opportunities in the rapidly evolving digital age. One potential avenue to realize this goal is the integration of polyoxometalates (POMs) and ionic liquid-based gels (ILGs), but the challenge of macrophase separation due to poor compatibility, especially caused by repulsion between like-charged units, poses a significant hurdle. Herein, the possibilities of producing diverse and homogenous POMs-containing ionohydrogels by nanoconfining POMs and ionic liquids (ILs) within an elastomer-like polyzwitterionic hydrogel using a simple one-step random copolymerization method, are expanded vastly. The incorporation of polyzwitterions provides a nanoconfined microenvironment and effectively modulates excessive electrostatic interactions in POMs/ILs/H2O blending system, facilitating a phase transition from macrophase separation to a submillimeter scale worm-like microphase-separation system. Moreover, combining POMs-reinforced ionohydrogels with a developed integrated self-powered sensing system utilizing strain sensors and Zn-ion hybrid supercapacitors has enabled efficient energy storage and detection of external strain changes with high precision. This work not only provides guidelines for manipulating morphology within phase-separation gelation systems, but also paves the way for developing versatile POMs-based ionohydrogels for state-of-the-art smart flexible electronics.

9.
Small ; 20(30): e2400356, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38389174

RESUMEN

Nickel oxide (NiOx) has been limited in use as a hole transport layer for its low conduction, surface defects, and redox reactions with the perovskite layer. To address these issues, the incorporation of zwitterion L-tryptophan (Trp) is proposed at the NiOx/Trp interface. The carboxyl group of Trp effectively passivates the surface positive defects of NiOx, thereby improving its optical and electrical properties. The ammonium group of Trp not only passivates negative defects but modulates the growth of the perovskite layer, resulting in an improved perovskite film quality. Furthermore, the Trp layer acts as a buffer layer, suppressing adverse interfacial reactions between the perovskite and NiOx. Consequently, perovskite solar cells with 1.56 and 1.68 eV absorbers achieve the champion power conversion efficiency (PCE) of 23.79% and 20.41%, respectively. Moreover, the unencapsulated devices demonstrate excellent long-term stability, retaining above 80% of the initial PCE value after 1600 h of storage in the air with a humidity of 50-60%.

10.
ACS Appl Mater Interfaces ; 16(8): 10389-10397, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38364294

RESUMEN

Perovskite nanocrystals have absorbed increasing interest, especially in the field of optoelectronics, owing to their unique characteristics, including their tunable luminescence range, robust solution processability, facile synthesis, and so on. However, in practice, due to the inherent instability of the traditional long-chain insulating ligands surrounding perovskite quantum dots (PeQDs), the performance of the as-fabricated QLED is relatively disappointing. Herein, the zwitterion 3-(decyldimethylammonio)propanesulfonate (DLPS) with the capability of double passivating perovskite quantum dots could effectively replace the original long-chain ligand simply through a multistep post-treatment strategy to finally inhibit the formation of defects. It was indicated from theexperimental results that the DLPS, as one type of ligand with the bimolecular ion, was very adavntageous in replacing long-chain ligands and further suppressing the formation of defects. Finally, the perovskite quantum dots with greatly enhanced PLQY as high as 98% were effectively achieved. Additionally, the colloidal stability of the corresponding PeQDs has been significantly enhanced, and a transparent colloidal solution was obtained after 45 days under ambient conditions. Finally, the as-fabricated QLEDs based on the ligand-exchanged PeQDs exhibited a maximum brightness of 9464 cd/m2 and an EQE of 12.17%.

11.
Chem Asian J ; 19(6): e202301121, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38269957

RESUMEN

A simple dihydroxy isoquinolinium molecule (3+) was prepared by a modification of a literature procedure. Interestingly, during optimisation of the synthesis a small amount of the natural product pseudopalmatine was isolated, and characterised for the first time by X-ray crystallography. Compound 3+ contains a catechol motif and positive charge on the same scaffold and was found to be a potent anion receptor, binding sulfate strongly in 8 : 2 d6-acetone:D2O and 7 : 3 d6-acetone:D2O (Ka>104 and 2,100 M-1, respectively). Unsurprisingly, chloride binding was much weaker, even in the less polar solvent mixture 9 : 1 d6-acetone:D2O. The sulfate binding is remarkably strong for such a simple molecule, however anion binding studies were complicated by the tendency of the molecule to react with BPh4 - or BF4 - species during anion metathesis reactions. This gave two unusual zwitterions containing tetrahedral boronate centres, which were both characterised by X-ray crystallography.

12.
Adv Colloid Interface Sci ; 324: 103091, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38281394

RESUMEN

The primary requirements for interfacial adsorption and corrosion inhibition are solubility and the existence of polar functional groups, particularly charges. Traditional organic inhibitors have a solubility issue due to the hydrophobic moieties they incorporate. Most documented organic inhibitors have aromatic rings, hydrocarbon chains, and a few functional groups. The excellent solubility and high efficacy of zwitterions and betaines make them the perfect replacements for insoluble corrosion inhibitors. Zwitterions and betaines are more easily soluble because of interactions between their positive and negative charges (-COO-, -PO3-, -NH3, -NHR2, -NH2R, -SO3- etc.) and the polar solvents. The positive and negative charges also aid these molecules' physical and chemical adsorption at the metal-electrolyte interfaces. They develop a corrosion-inhibiting layer through their adsorption. After becoming adsorbed at the metal-electrolyte interface, they act as mixed-type inhibitors, slowing both cathodic and anodic processes. They usually adsorb according to the Langmuir adsorption isotherm. In this article, the corrosion inhibition potential of zwitterions and betaines in the aqueous phase, as well as their mode of action, are reviewed. This article details the advantages and disadvantages of utilizing zwitterions and betaines for sustainable corrosion protection.

13.
Biomater Adv ; 158: 213771, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38271801

RESUMEN

The efficacy of injectable micellar carriers is hindered due to the disassembly of micelles into free surfactants in the body, resulting in their dilution below the critical micelle concentration (CMC). Copolymer micelles were developed to address this issue, containing a superhydrophilic zwitterionic block and a superhydrophobic block with a disulfide bond, which exhibited a CMC lower than conventional micellar carriers. Cleavable copolymers composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) zwitterion and polycaprolactone CHLZW as the shell, with gold nanoparticles as their core, were studied to deliver doxorubicin to tumor cells while reducing the side effect of the free cytotoxic agent. The research focused on the impact of gold nanoparticles present in targeted TMT-micelles core on stability and in vivo bioavailability and sonotoxicity of the nanoparticles, as well as their synergistic effect on targeted chemotherapy. The nanomicelles prepared in this study demonstrated excellent biocompatibility and responsiveness to stimuli. PCL-SS-MPC nanomicelles displayed drug release in response to GSH and pH, resulting in high DOX release at GSH 10 mM and pH 5. Our findings, supported by MTT, flow cytometry, and confocal laser scanning microscopy, demonstrated that AuS-PM-TMTM-DOX micelles effectively induced apoptosis and enhanced cellular uptake in MCF7 and MDA-MB231 cell lines. The cytotoxic effects of AuS-PM-DOX/US on cancer cells were approximately 38 % higher compared to AuS-PM-DOX samples at a concentration of IC50 0.68 nM. This increase in cellular toxicity was primarily attributed to the promotion of apoptosis. The introduction of disulfide linkages in AuSNPs resulted in increased ROS production when exposed to ultrasound stimulation, due to a reduction in GSH levels. Compared to other commercially available nanosensitizers such as titanium dioxide, exposure of AuS-PM to ultrasound radiation (1.0 W/cm, 2 min) significantly enhanced cavitation effects and resulted in 3 to 5 times higher ROS production. Furthermore, laboratory experiments using human breast cancer cells (MDA-MB-231, MCF7) demonstrated that the toxicity of AuS-PM in response to ultrasound waves is dose-dependent. The findings of this study suggest that this formulated nanocarrier holds great potential as a viable treatment option for breast cancer. It can induce apoptosis in cancer cells, reduce tumor size, and display notable therapeutic efficacy.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas del Metal , Humanos , Femenino , Micelas , Neoplasias de la Mama/tratamiento farmacológico , Oro , Especies Reactivas de Oxígeno , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Antineoplásicos/farmacología , Polímeros , Oxidación-Reducción , Concentración de Iones de Hidrógeno , Disulfuros
14.
Small ; 20(8): e2306739, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37817362

RESUMEN

A highly reversible zinc anode is crucial for the commercialization of zinc-ion batteries. However, the change in the microstructure of the electric double layer originated from the dynamic change in charge density on the electrode greatly impacts anode reversibility during charge/discharge, which is rarely considered in previous research. Herein, the zwitterion additive is employed to create an adaptive interface by coupling the transient zwitterion dynamics upon the change of interfacial charge density. Ab initio molecular dynamics simulations suggest the molecular orientation and adsorption groups of zwitterions will be determined by the charging state of the electrode. ZnSO4 electrolyte with zwitterion fulfills a highly reversible Zn anode with an average Coulombic efficiency of up to 99.85%. Zn/Zn symmetric cells achieve greatly enhanced cycling stability for 700 h with extremely small voltage hysteresis of 29 mV under 5 mA cm-2 with 5 mAh cm-2 . This study validates the adaptive interface based on transient dynamics of zwitterions, which sheds new light on developing highly reversible metal anodes with a high utilization rate.

15.
Chemosphere ; 346: 140493, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37890801

RESUMEN

The recent advancements in fabricating forward osmosis (FO) membranes have shown promising results in desalination and water treatment. Different methods have been applied to improve FO performance, such as using mixed or new draw solutions, enhancing the recovery of draw solutions, membrane modification, and developing FO-hybrid systems. However, reliable methods to address the current issues, including reverse salt flux, fouling, and antibacterial activities, are still in progress. In recent decades, surface modification has been applied to different membrane processes, including FO membranes. Introducing nanochannels, bioparticles, new monomers, and hydrophilic-based materials to the surface layer of FO membranes has significantly impacted their performance and efficiency and resulted in better control over fouling and concentration polarization (CP) in these membranes. This review critically investigates the recent developments in FO membrane processes and fabrication techniques for FO surface-layer modification. In addition, this study focuses on the latest materials and structures used for the surface modification of FO membranes. Finally, the current challenges, gaps, and suggestions for future studies in this field have been discussed in detail.


Asunto(s)
Membranas Artificiales , Purificación del Agua , Ósmosis , Purificación del Agua/métodos , Cloruro de Sodio , Interacciones Hidrofóbicas e Hidrofílicas
16.
ACS Appl Mater Interfaces ; 15(48): 55813-55821, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38014814

RESUMEN

Defect passivation of the perovskite surface and grain boundary (GBs) has become a widely adopted approach to reduce charge recombination. Research has demonstrated that functional groups with Lewis acid or base properties can successfully neutralize trap states and limit nonradiative recombination. Unlike traditional Lewis acid-base organic molecules that only bind to a single anionic or cationic defect, zwitterions can passivate both anionic and cationic defects simultaneously. In this work, zwitterions organic halide salt 1-amino pyridine iodine (AmPyI) is used as a perovskite for defect passivation. It is found that a pair of amino lone electrons in AmPyI can passivate defects surface and GBs through hydrogen bonding with perovskite, and the introduced I- can bind to uncoordinated Pb2+ while also controlling the surface morphology of the film and improving the crystallinity. In the presence of the AmPyI additive, we obtained about 1.24 µm of amplified perovskite grains and achieved an efficiency of 23.80% with minimal hysteresis.

17.
J Colloid Interface Sci ; 652(Pt A): 184-194, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37595436

RESUMEN

The development of quantum dot (QD)-based modular bioprobe that has a compact size and enable a facile conjugation of various biofunctional groups is in high demand. To address this, we surface engineered QDs with zwitterion polymer ligands to have an inherent compact size and derivatized them sequentially with the recombinant proteins SpyCatcher/SpyTag (SC/ST) to use their protein ligation system. SC/ST spontaneously form one complex through the isopeptide bond between them. SC-conjugated QDs (QD-SC) were used as base building blocks. Then, ST-biomolecules were added for modular biofunctionalization. We synthesized compact sized (∼15 nm) QD-SC-ST-affibody (antibody-mimicking small protein for tumor detection) conjugates, which showed successful cell-receptor targeting. The target cell-receptor could be easily tuned by changing the type of ST-affibody. We also demonstrated that anti-human-chorionic-gonadotropin mouse IgG1 antibodies can be labeled on the QD surface by mixing QD-SC with the ST-MG1Nb (mouse-IgG1-specific protein). The immunoassay performance of the antibody-labeled QDs was evaluated using a pregnancy test kit, displaying equivalent detection sensitivity to a commercially available kit. This study proposed an innovative strategy for QD biofunctionalization in a modular manner, which can be expanded to a diverse range of colloidal particle derivatization.


Asunto(s)
Puntos Cuánticos , Ratones , Animales , Polímeros , Proteínas Recombinantes/química , Inmunoglobulina G
18.
Adv Mater ; 35(42): e2303632, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37435992

RESUMEN

With the development of various gel-based flexible sensors, novel gels with multiple integrated and efficient properties, particularly recyclability, have been developed. Herein, a starch-based ADM (amylopectin (AP)-poly(3-[dimethyl-[2-(2-methylprop-2- enoyloxy)ethyl]azaniumyl]propane-1-sulfonate) (PDMAPS)-MXene) gel is prepared by a facile "cooking" strategy accompanying the gelatinization of AP and polymerization reaction of zwitterionic monomers. Reversible crosslinking in the gel occurs through hydrogen bonding and electrostatic interactions. The ADM gel exhibits high stretchability (≈2700%, after one month), swift self-healing performance, self-adhesive properties, favorable freezing resistance, and satisfactory moisturizing properties (≥30 days). Interestingly, the ADM gel can be recycled and reused by a "kneading" method and "dissolution-dialysis" process, respectively. Furthermore, the ADM gel can be assembled as a strain sensor with a broad working strain range (≈800%) and quick response time (response time 211 ms and recovery time 253 ms, under 10% strain) to detect various macro- and micro-human-motions, even under harsh conditions such as pronunciation and handwriting. The ADM gel can also be used as a humidity sensor to investigate humidity and human respiratory status, suggesting its practical application in personal health management. This study provides a novel strategy for the preparation of high-performance recycled gels and flexible sensors.

19.
Macromol Rapid Commun ; 44(18): e2300223, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37249561

RESUMEN

Flexible electrolytes with solid self-supporting properties are highly desired in the fields of energy and electronics. However, traditional flexible electrolytes prepared by doping ionic liquids or salt solutions into a polymer matrix pose a risk of liquid component leakage during device operation. In this work, the development of supramolecular ionic network electrolytes using polyoxometalate nanoclusters as supramolecular crosslinkers to solidify bola-type zwitterionic liquids is reported. The resulting self-supporting electrolytes possess semi-solid features and show a high proton conductivity of 8.2 × 10-4 S cm-1 at low humidity (RH = 30%). Additionally, the electrolytes exhibit a typical plateau region in rheological tests, indicating that their dynamic network structures can contribute mechanical behavior similar to the entangled networks in covalent polymer materials. This work introduces a new paradigm for designing flexible solid electrolytes and expands the concept of reticular chemistry to noncrystalline systems.


Asunto(s)
Electrólitos , Protones , Iones , Polímeros
20.
Acta Biomater ; 166: 201-211, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37150278

RESUMEN

Hydrogels show eminent advantages in biomedical and pharmaceutical fields. However, their application as coating materials for biomedical devices is limited by several key challenges, such as lack of universality, weak mechanical strength, and low adhesion to the substrate. Here we report versatile and tough adhesion composite hydrogel paints (CHPs), which consist of zwitterionic copolymers and microgels, both with reactive groups. The CHPs exhibit tunable rheology and thickness, hydrophilicity, biofouling resistance, durability, and convenient fabrication on metal, polymer, and inorganic surfaces with arbitrary shapes. As a proof-of-concept, the CHP-surgical sutures demonstrate exceptional lubrication, drug delivery, anti-infection, and anti-fibrous capsule properties. Moreover, the CHP-PVC tubing effectively prevents thrombus formation in vitro and ex vivo rabbit blood circulation without anticoagulants. This work provides valuable insights for enhancing and developing integrated hydrogel technologies for biomedical devices. STATEMENT OF SIGNIFICANCE: The combination of hydrogel and biomedical devices can enable numerous existing applications in medicine. In this study, inspired by the principle of microgel reinforcement in industrial paints, we propose a simple and versatile zwitterionic composite hydrogel paints (CHPs) strategy, which can be easily applied to diverse substrates with arbitrary shapes by covalent grafting between complementary groups by brush, dip, or spray. The CHPs integrated universality, tough adhesion, mechanical durability, and anti-biofouling properties because of their unique chemical composition and coating structure design. This strategy provides a simple and versatile route for surface modification of biomedical devices.


Asunto(s)
Incrustaciones Biológicas , Microgeles , Animales , Conejos , Hidrogeles/farmacología , Hidrogeles/química , Adhesivos , Polímeros/química , Incrustaciones Biológicas/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA