Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 29(41): 62347-62360, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35397030

RESUMEN

Achieving advanced treatment of phosphorus (P) to prevent water eutrophication and meet increasingly stringent wastewater discharge standard is an important goal of water management. In this study, a low-cost, high-efficiency phosphate adsorbent zirconium-modified biochar (ZrBC) was successfully synthesized through co-precipitation method, in which the biochar was prepared from the pyrolysis of peanut shell powder. ZrBC exhibited strong adsorption ability to low-concentration phosphate (< 1 mg·L-1) in water, and the phosphate removal reached 100% at the investigated dosage range (0.1-1.0 mg·L-1). The adsorption process could be described well by pseudo-second-order model and Langmuir isotherm model, indicating that the phosphate adsorption by ZrBC was mainly a chemical adsorption and single-layer adsorption process. The calculated static maximum phosphate adsorption capacity was 58.93 mg·g-1 at 25 °C. The ligand exchange between surface hydroxyl groups and phosphate was the main mechanism for the phosphate adsorption on ZrBC. The presence of coexisting anions except for SO42- had little effect on the phosphate removal. At the column experiment, ZrBC showed superior treatment capacities for simulated secondary effluents and the breakthrough time for 0.5 mg·L-1 effluent phosphate concentration reached 190 h. ZrBC highlights the potential as an effective and environment-friendly adsorbent for the removal of low-concentration phosphate from secondary effluents of municipal wastewater treatment plants (WWTPs).


Asunto(s)
Contaminantes Químicos del Agua , Circonio , Adsorción , Carbón Orgánico , Concentración de Iones de Hidrógeno , Cinética , Fosfatos , Agua , Contaminantes Químicos del Agua/análisis
2.
Chemosphere ; 258: 127370, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32554019

RESUMEN

Porous luffa plant fibre (LF) was grafted with Fe and Zr, and the ability of the fabricated adsorbents to remove arsenate (As(V)) from water was investigated in batch and column adsorption experiments. The Langmuir adsorption capacity (mg g-1) at pH 7 of LF was found to be 0.035, which increased to 2.55 and 2.89 after being grafted with Fe (FLF-3) and Zr (ZLF-3), respectively. Grafting with Fe and Zr increased the zeta potential and zero point of charge (ZPC) of LF (from pH 3.9 to 7.4 for Fe grafting and to 7.6 for Zr grafting), due to chemical bonding of the metals, possibly with the hydroxyl and carboxylic groups in LF as indicated in FTIR peaks. Zeta potential and ZPC decreased after As adsorption owing to inner-sphere complexation mechanism of adsorption. The increase of pH from 3 to 10 progressively reduced the adsorbents' adsorption capacity. Co-existing anions weakened the As(V) removal efficiency in the order, PO43- > SiO32- > CO32- > SO42-. Adsorption kinetics data fitted well to the Weber and Morris model, which revealed initial fast and subsequent slow rates of intra-particle As diffusion into the bigger pores and smaller pores, respectively. Column adsorption data fitted well to the Thomas model with the predicted adsorption capacities in the same order as in the batch adsorption experiment (ZLF-3 > FLF-3 > LF).


Asunto(s)
Arseniatos/análisis , Agua Potable/química , Hierro/química , Luffa/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Circonio/química , Adsorción , Agua Potable/normas , Concentración de Iones de Hidrógeno , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA