Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 13(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36557499

RESUMEN

A nanogenerator (NG) is an energy harvester device that converts mechanical energy into electrical energy on a small scale by relying on physical changes. Piezoelectric semiconductor materials play a key role in producing high output power in piezoelectric nanogenerator. Low cost, reliability, deformation, and electrical and thermal properties are the main criteria for an excellent device. Typically, there are several main types of piezoelectric materials, zinc oxide (ZnO) nanorods, barium titanate (BaTiO3) and lead zirconate titanate (PZT). Among those candidate, ZnO nanorods have shown high performance features due to their unique characteristics, such as having a wide-bandgap semiconductor energy of 3.3 eV and the ability to produce more ordered and uniform structures. In addition, ZnO nanorods have generated considerable output power, mainly due to their elastic nanostructure, mechanical stability and appropriate bandgap. Apart from that, doping the ZnO nanorods and adding doping impurities into the bulk ZnO nanorods are shown to have an influence on device performance. Based on findings, Ni-doped ZnO nanorods are found to have higher output power and surface area compared to other doped. This paper discusses several techniques for the synthesis growth of ZnO nanorods. Findings show that the hydrothermal method is the most commonly used technique due to its low cost and straightforward process. This paper reveals that the growth of ZnO nanorods using the hydrothermal method has achieved a high power density of 9 µWcm-2.

2.
Int J Biol Macromol ; 162: 1743-1751, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32800955

RESUMEN

The current study describes the fabrication of chitosan­zinc oxide nanorods composite (CHT/ZnO) on fiberglass panels (support substrate). ZnO nanorods (NRs) with size ranging from 20 to 100 nm and some microrods with an approximate size of 0.5-1 µm were grown on fiberglass panels. CHT 1%/ZnO composite had ZnO NRs incorporated into chitosan (CHT) coating while ZnO NRs were not visible in the CHT 2%/ZnO NRs composite. XRD and FTIR results showed the presence of the ZnO and chitosan. The water contact angle decreased from 80° ± 2° (control) to 65° ± 2° for CHT 1%/ZnO NRs and 42 ± 2° for CHT 2%/ZnO NRs composite coatings. The antimicrobial activities of the coated fiberglass panels were investigated using biofilm-forming bacteria Bacillus subtilis and Escherichia coli under both light and dark conditions. CHT/ZnO composite coated fiberglass panels showed the strongest antimicrobial activity compared to chitosan, ZnO NRs coatings, and Zn-based antifouling paint in the experiments with B. subtilis and E. coli under light conditions. The highest antifouling activity was observed for CHT 2%/ZnO composites. CHT/ZnO composites can be good alternatives to the toxic antifouling paints.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Quitosano/farmacología , Nanocompuestos/química , Nanotubos/química , Óxido de Zinc/farmacología , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/fisiología , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA