Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.952
Filtrar
1.
mBio ; : e0066724, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248570

RESUMEN

Colletotrichum species are notorious for causing anthracnose on many fruits, leading to significant economic losses worldwide. As a model, we functionally characterized cys2-his2 (C2H2) zinc finger proteins (CsCZFs) in Colletotrichum scovillei, a major causal agent of pepper fruit anthracnose in many countries. In all, 62 CsCZFs were identified by in silico genomic analysis. Twelve were selected based on their expression profiles to generate targeted deletion mutants for functional investigation. ΔCsczf1 markedly reduced conidiation and constitutive expression of CsCZF1 partially recovered conidiation in an asexual reproduction-defective mutant, ΔCshox2. Deletion of CsCZF12, orthologous to the calcineurin-responsive transcription factor Crz1, impaired autophagy in C. scovillei. ΔCsczf9 was defective in surface recognition, appressorium formation, and suppression of host defenses. CsCZF9 was identified as an essential and novel regulator under the control of the mitogen-activated protein kinase (CsPMK1) in an early step of appressorium development in C. scovillei. This study provides novel insights into CsCZF-mediated regulation of differentiation and pathogenicity in C. scovillei, contributing to understanding the regulatory mechanisms governing fruit anthracnose epidemics.IMPORTANCEThe phytopathogenic fungus Colletotrichum scovillei is known to cause serious anthracnose on chili pepper. However, the molecular mechanism underlying anthracnose caused by this fungus remains largely unknown. Here, we systematically analyzed the functional roles of cys2-his2 zinc finger proteins (CsCZFs) in the dissemination and pathogenic development of this fungus. Our results showed that CsCZF1 plays an important role in conidiation and constitutive expression of CsCZF1 restored conidiation in an asexual reproduction-defective mutant, ΔCshox2. The CsCZF9, a novel target of the mitogen-activated protein kinase (CsPMK1), is essential for surface recognition to allow appressorium formation and suppression of host defenses in C. scovillei. The CsCZF12, orthologous to the calcineurin-responsive transcription factor Crz1, is involved in the autophagy of C. scovillei. Our findings reveal a comprehensive mechanism underlying CsCZF-mediated regulation of differentiation and pathogenicity of C. scovillei, which contributes to the understanding of fruit anthracnose epidemics and the development of novel strategies for disease management.

2.
Comput Struct Biotechnol J ; 23: 3143-3154, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39234301

RESUMEN

The zinc-finger antiviral protein (ZAP) is an innate immunity sensor of non-self nucleic acids. Its antiviral activity is exerted through the physical interaction with different cofactors, including TRIM25, Riplet and KHNYN. Cellular proteins that interact with infectious agents are expected to be engaged in genetic conflicts that often result in their rapid evolution. To test this possibility and to identify the regions most strongly targeted by natural selection, we applied in silico molecular evolution tools to analyze the evolutionary history of ZAP and cofactors in four mammalian groups. We report evidence of positive selection in all genes and in most mammalian groups. On average, the intrinsically disordered regions (IDRs) embedded in the four proteins evolve significantly faster than folded domains and most positively selected sites fall within IDRs. In ZAP, the PARP domain also shows abundant signals of selection, and independent evolution in different mammalian groups suggests modulation of its ADP-ribose binding ability. Detailed analyses of the biophysical properties of IDRs revealed that chain compaction and conformational entropy are conserved across mammals. The IDRs in ZAP and KHNYN are particularly compact, indicating that they may promote phase separation (PS). In line with this hypothesis, we predicted several PS-promoting regions in ZAP and KHNYN, as well as in TRIM25. Positively selected sites are abundant in these regions, suggesting that PS may be important for the antiviral functions of these proteins and the evolutionary arms race with viruses. Our data shed light into the evolution of ZAP and cofactors and indicate that IDRs represent central elements in host-pathogen interactions.

3.
Ecotoxicol Environ Saf ; 284: 117018, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260214

RESUMEN

Hexavalent chromium [Cr(VI)] is a widely distributed carcinogen in industrial contexts and general environmental contexts. Emerging research highlights the central role of ribosomal DNA (rDNA) in DNA Damage Responses (DDRs). However, there remains a lack of investigation into the potential dose-dependent relationship between exposure to Cr(VI) and alterations in rDNA copy number (CN), as well as the related mechanisms underlying these effects. A molecular epidemiological investigation involving 67 workers exposed to Cr(VI) and 75 unexposed controls was conducted. There was a notable increase in ZNF385A expression, variations in rDNA CN, and elevated γH2AX levels in the peripheral blood of Cr(VI)-exposed workers. Restricted cubic spline (RCS) models showed that blood Cr levels in the exposed population exhibited non-linear dose-dependent relationships with γH2AX, rDNA CN, and ZNF385A. Of considerable interest, there were robust and positive associations between ZNF385A and both γH2AX and rDNA CN. Further in vitro experiments provided concrete evidence that Cr(VI) simultaneously caused an increase in ZNF385A expression and variations in rDNA CN. ZNF385A-depleted cells showed increased sensitivity to Cr(VI)-mediated DDRs and alterations in rDNA CN. This study indicated that ZNF385A played a highly significant role in the rDNA CN variation in response to Cr(VI)-induced DNA damage.

4.
Mol Phylogenet Evol ; 201: 108195, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260627

RESUMEN

Members of the plant specific family of C1-1i zincfinger transcriptionfactors (ZF-TFs), such as SUPERMAN, JAGGED, KNUCKLES or GIS,regulatediversedevelopmental processes including sexual reproduction. C1-1is consist of one zinc-finger and one to two EAR domains, connected by large intrinsically disordered regions (IDR). While the role of C1-i1 ZF-TFs in development processes is well known for some genes in Arabidopsis, rice or tomatoa comprehensive and broadphylogenetic background is lacking, yet knowledge of orthology is a requirement for a better understanding of C1-1i-Zf-TFs diverse roles in plants. Here, we provide a fine-grained and land plant wide classification of C1-1i sub-families and their known co-repressors TOPLESS and TOPLESS RELATED. Our work combines the identification of orthologous groups with Maximum-Likelihood phylogeny reconstructions and digital gene expression analyses mining high quality land plant genomes and transcriptomes to generate a comprehensive framework of C1-1i ZF-TF evolution. We show that C1-1i's are low to moderate copy genesand that orthologous genesonly partiallyhaveconserved sub-family and life cycle stage dependent expression pattern across land plants while others are highly diverged. Our workprovides the phylogenetic framework for C1-1i ZF-TFs, s and strengthen C1-1 ZF-TFs as a potential model for IDR-research in plants.

5.
Sci Rep ; 14(1): 21827, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294234

RESUMEN

Zinc finger protein 263 (ZNF263) is frequently upregulated in various tumor types; however, its function and regulatory mechanism in colorectal cancer (CRC) have not yet been elucidated. In this study, the expression of ZNF263 was systematically examined using data from The Cancer Genome Atlas database and samples from patients with CRC. The results indicated that high expression of ZNF263 in CRC tissues is significantly associated with tumor grade, lymph node metastasis and disant metastasis. Additionally, overexpression of ZNF263 significantly promoted the proliferation, invasion, migration, and epithelial-mesenchymal transition of CRC cells, while also increasing signal transducer and activator of transcription 3 (STAT3) expression and mRNA stability. Conversely, knockdown of ZNF263 inhibited the malignant behavior of CRC cells and decreased STAT3 expression and mRNA stability. Further mechanism studies using chromatin immunoprecipitation (CHIP) and luciferase assays verified that ZNF263 directly binds to the STAT3 promoter. Rescue experiments demonstrated that the knockdown or overexpression of STAT3 could significantly reverse the effects of ZNF263 on CRC cells. Additionally, our study found that overexpression of ZNF263 enhanced the resistance of CRC cells to the chemoradiotherapy. In summary, this study not only elucidated the significant role of ZNF263 in CRC but also proposed novel approaches and methodologies for the diagnosis and treatment of this malignancy.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Proteínas de Unión al ADN , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción STAT3 , Femenino , Humanos , Masculino , Persona de Mediana Edad , Línea Celular Tumoral , Movimiento Celular , Quimioradioterapia/métodos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/genética , Factor de Transcripción STAT3/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
6.
Reprod Sci ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39218837

RESUMEN

Zinc finger E-box binding homeobox 1 (ZEB1) promotes epithelial-mesenchymal transition (EMT) in carcinogenesis, but its role in embryo implantation has not yet been well studied. In the present study we evaluated the hypothesis that ZEB1-induced EMT is essential for embryo implantation in vivo. Endometrial epithelium from female Kunming mice (non-pregnant, and pregnant from day 2.5 to 6.5) were collected for assessment of mRNA/protein expression of ZEB1, and EMT markers E-cadherin and vimentin, by employment of real-time quantitative reverse transcription PCR, Western blot, and immunohistochemical staining. To test if knockdown of ZEB1 affects embryo implantation in vivo, mice received intrauterine injection of shZEB1 before the number of embryos implanted was counted. The results showed that, ZEB1 was highly expressed at both mRNA and protein levels in the mouse endometrium on day 4.5 of pregnancy, paralleled with down-regulated E-cadherin and up-regulated vimentin expression (P < 0.05). Intrauterine injection of shZEB1 markedly suppressed embryo implantation in mice (P < 0.01). Conclusively, the present work demonstrated that ZEB1 is essential for embryo implantation under in vivo condition, and is possibly due to its effect on modulation of endometrial receptivity through EMT.

7.
Curr Biol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39163855

RESUMEN

Muscle morphogenesis is a multi-step program, starting with myoblast fusion, followed by myotube-tendon attachment and sarcomere assembly, with subsequent sarcomere maturation, mitochondrial amplification, and specialization. The correct chronological order of these steps requires precise control of the transcriptional regulators and their effectors. How this regulation is achieved during muscle development is not well understood. In a genome-wide RNAi screen in Drosophila, we identified the BTB-zinc-finger protein Tono (CG32121) as a muscle-specific transcriptional regulator. tono mutant flight muscles display severe deficits in mitochondria and sarcomere maturation, resulting in uncontrolled contractile forces causing muscle rupture and degeneration during development. Tono protein is expressed during sarcomere maturation and localizes in distinct condensates in flight muscle nuclei. Interestingly, internal pressure exerted by the maturing sarcomeres deforms the muscle nuclei into elongated shapes and changes the Tono condensates, suggesting that Tono senses the mechanical status of the muscle cells. Indeed, external mechanical pressure on the muscles triggers rapid liquid-liquid phase separation of Tono utilizing its BTB domain. Thus, we propose that Tono senses high mechanical pressure to adapt muscle transcription, specifically at the sarcomere maturation stages. Consistently, tono mutant muscles display specific defects in a transcriptional switch that represses early muscle differentiation genes and boosts late ones. We hypothesize that a similar mechano-responsive regulation mechanism may control the activity of related BTB-zinc-finger proteins that, if mutated, can result in uncontrolled force production in human muscle.

8.
J Exp Bot ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185708

RESUMEN

Citrus yellow vein-clearing virus (CYVCV) is an increasing threat to citrus cultivation. Notably, the role of zinc finger proteins (ZFPs) in mediating viral resistance in citrus plants is unclear. In this study, we demonstrate that ZFPs ClSUP and ClDOF3.4 enhance citrus defense responses against CYVCV in Eureka lemon. ClSUP interacted with the coat protein (CP) of CYVCV to reduce CP accumulation and inhibit its silencing suppressor function. Overexpression of CISUP triggered reactive oxygen species (ROS) and salicylic acid (SA) pathways, and enhanced resistance to CYVCV infection. In contrast, ClSUP-silencing resulted in increased CP accumulation and down-regulated ROS and SA-related genes. ClDOF3.4 interacts with ClSUP to facilitate its interactions with CP. Furthermore, ClDOF3.4 synergistically regulated the accumulation of ROS and SA with ClSUP and accelerated the down-regulation of CP accumulation. Transgenic plants co-expressing ClSUP and ClDOF3.4 remarkedly decrease the CYVCV. These findings provide a new reference for understanding the interaction mechanism between the host and CYVCV.

9.
Mol Cell ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39173638

RESUMEN

Partitioning of repressive from actively transcribed chromatin in mammalian cells fosters cell-type-specific gene expression patterns. While this partitioning is reconstructed during differentiation, the chromatin occupancy of the key insulator, CCCTC-binding factor (CTCF), is unchanged at the developmentally important Hox clusters. Thus, dynamic changes in chromatin boundaries must entail other activities. Given its requirement for chromatin loop formation, we examined cohesin-based chromatin occupancy without known insulators, CTCF and Myc-associated zinc-finger protein (MAZ), and identified a family of zinc-finger proteins (ZNFs), some of which exhibit tissue-specific expression. Two such ZNFs foster chromatin boundaries at the Hox clusters that are distinct from each other and from MAZ. PATZ1 was critical to the thoracolumbar boundary in differentiating motor neurons and mouse skeleton, while ZNF263 contributed to cervicothoracic boundaries. We propose that these insulating activities act with cohesin, alone or combinatorially, with or without CTCF, to implement precise positional identity and cell fate during development.

10.
Front Cell Dev Biol ; 12: 1448789, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119040

RESUMEN

Zinc finger proteins (ZNF), a unique yet diverse group of proteins, play pivotal roles in fundamental cellular mechanisms including transcription regulation, chromatin remodeling, protein/RNA homeostasis, and DNA repair. Consequently, the mis regulation of ZNF proteins can result in a variety of human diseases, ranging from neurodevelopmental disorders to several cancers. Considering the promising results of DNA damage repair (DDR) inhibition in the clinic, as a therapeutic strategy for patients with homologous recombination (HR) deficiency, identifying other potential targetable DDR proteins as emerged vulnerabilities in resistant tumor cells is essential, especially when considering the burden of acquired drug resistance. Importantly, there are a growing number of studies identifying new ZNFs and revealing their significance in several DDR pathways, highlighting their great potential as new targets for DDR-inhibition therapy. Although, there are still many uncharacterized ZNF-containing proteins with unknown biological function. In this review, we highlight the major classes and observed biological functions of ZNF proteins in mammalian cells. We briefly introduce well-known and newly discovered ZNFs and describe their molecular roles and contributions to human health and disease, especially cancer. Finally, we discuss the significance of ZNFs in DNA repair mechanisms, their potential in cancer therapy and advances in exploiting ZNF proteins as future therapeutic targets for human disease.

11.
RNA Biol ; 21(1): 1-10, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39183472

RESUMEN

One of the most recent advances in the analysis of viral RNA-cellular protein interactions is the Comprehensive Identification of RNA-binding Proteins by Mass Spectrometry (ChIRP-MS). Here, we used ChIRP-MS in mock-infected and Zika-infected wild-type cells and cells knockout for the zinc finger CCCH-type antiviral protein 1 (ZAP). We characterized 'ZAP-independent' and 'ZAP-dependent' cellular protein interactomes associated with flavivirus RNA and found that ZAP affects cellular proteins associated with Zika virus RNA. The ZAP-dependent interactome identified with ChIRP-MS provides potential ZAP co-factors for antiviral activity against Zika virus and possibly other viruses. Identifying the full spectrum of ZAP co-factors and mechanisms of how they act will be critical to understanding the ZAP antiviral system and may contribute to the development of antivirals.


Asunto(s)
ARN Viral , Proteínas de Unión al ARN , Infección por el Virus Zika , Virus Zika , Virus Zika/genética , Virus Zika/fisiología , Virus Zika/metabolismo , Humanos , ARN Viral/metabolismo , ARN Viral/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Infección por el Virus Zika/virología , Infección por el Virus Zika/metabolismo , Unión Proteica , Interacciones Huésped-Patógeno/genética , Espectrometría de Masas , Células HEK293
12.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125930

RESUMEN

Biotic and abiotic stresses have already seriously restricted the growth and development of Pinus massoniana, thereby influencing the quality and yield of its wood and turpentine. Recent studies have shown that C2H2 zinc finger protein transcription factors play an important role in biotic and abiotic stress response. However, the members and expression patterns of C2H2 TFs in response to stresses in P. massoniana have not been performed. In this paper, 57 C2H2 zinc finger proteins of P. massoniana were identified and divided into five subgroups according to a phylogenetic analysis. In addition, six Q-type PmC2H2-ZFPs containing the plant-specific motif 'QALGGH' were selected for further study under different stresses. The findings demonstrated that PmC2H2-ZFPs exhibit responsiveness towards various abiotic stresses, including drought, NaCl, ABA, PEG, H2O2, etc., as well as biotic stress caused by the pine wood nematode. In addition, PmC2H2-4 and PmC2H2-20 were nuclear localization proteins, and PmC2H2-20 was a transcriptional activator. PmC2H2-20 was selected as a potential transcriptional regulator in response to various stresses in P. massoniana. These findings laid a foundation for further study on the role of PmC2H2-ZFPs in stress tolerance.


Asunto(s)
Dedos de Zinc CYS2-HIS2 , Regulación de la Expresión Génica de las Plantas , Filogenia , Pinus , Proteínas de Plantas , Estrés Fisiológico , Factores de Transcripción , Pinus/genética , Pinus/parasitología , Pinus/metabolismo , Estrés Fisiológico/genética , Dedos de Zinc CYS2-HIS2/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Dedos de Zinc
13.
Dokl Biol Sci ; 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128960

RESUMEN

The transcription factor Z4 (putzig) is one of the key proteins that determine the chromatin structure in Drosophila. Z4 is found at the boundaries of bands on polytene chromosomes, and the bands are currently thought to correlate with chromatin domains. Z4 is a component of a protein complex that additionally includes Chromator and BEAF-32, and a conserved domain is necessary to occur at the N end of Z4 to ensure its interaction with the two proteins. In this study, a zinc finger-associated domain (ZAD) domain was identified in Z4. The capability of dimerization was confirmed for the domain by biochemical methods. A dimer model of the domain was obtained using AlphaFold2, and the model structure was confirmed using small-angle X-ray scattering (SAXS). The dimer structure shows a fold typical of ZAD domains.

14.
Int J Mol Sci ; 25(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39201669

RESUMEN

CCHC-type zinc finger proteins (CCHC-ZFPs), ubiquitous across plant species, are integral to their growth, development, hormonal regulation, and stress adaptation. Roses (Rosa sp.), as one of the most significant and extensively cultivated ornamentals, account for more than 30% of the global cut-flower market. Despite its significance, the CCHC gene family in roses (Rosa sp.) remains unexplored. This investigation identified and categorized 41 CCHC gene members located on seven chromosomes of rose into 14 subfamilies through motif distribution and phylogenetic analyses involving ten additional plant species, including Ginkgo biloba, Ostreococcus lucimarinus, Arabidopsis thaliana, and others. This study revealed that dispersed duplication likely plays a crucial role in the diversification of the CCHC genes, with the Ka/Ks ratio suggesting a history of strong purifying selection. Promoter analysis highlighted a rich presence of cis-acting regulatory elements linked to both abiotic and biotic stress responses. Differential expression analysis under drought conditions grouped the 41 CCHC gene members into five distinct clusters, with those in group 4 exhibiting pronounced regulation in roots and leaves under severe drought. Furthermore, virus-induced gene silencing (VIGS) of the RcCCHC25 member from group 4 compromised drought resilience in rose foliage. This comprehensive analysis lays the groundwork for further investigations into the functional dynamics of the CCHC gene family in rose physiology and stress responses.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Rosa , Estrés Fisiológico , Rosa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Genoma de Planta , Regiones Promotoras Genéticas , Estudio de Asociación del Genoma Completo , Perfilación de la Expresión Génica , Dedos de Zinc/genética
15.
Plant Cell Rep ; 43(9): 215, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138747

RESUMEN

KEY MESSAGE: Overexpression of rice A20/AN1 zinc-finger protein, OsSAP10, improves water-deficit stress tolerance in Arabidopsis via interaction with multiple proteins. Stress-associated proteins (SAPs) constitute a class of A20/AN1 zinc-finger domain containing proteins and their genes are induced in response to multiple abiotic stresses. The role of certain SAP genes in conferring abiotic stress tolerance is well established, but their mechanism of action is poorly understood. To improve our understanding of SAP gene functions, OsSAP10, a stress-inducible rice gene, was chosen for the functional and molecular characterization. To elucidate its role in water-deficit stress (WDS) response, we aimed to functionally characterize its roles in transgenic Arabidopsis, overexpressing OsSAP10. OsSAP10 transgenics showed improved tolerance to water-deficit stress at seed germination, seedling and mature plant stages. At physiological and biochemical levels, OsSAP10 transgenics exhibited a higher survival rate, increased relative water content, high osmolyte accumulation (proline and soluble sugar), reduced water loss, low ROS production, low MDA content and protected yield loss under WDS relative to wild type (WT). Moreover, transgenics were hypersensitive to ABA treatment with enhanced ABA signaling and stress-responsive genes expression. The protein-protein interaction studies revealed that OsSAP10 interacts with proteins involved in proteasomal pathway, such as OsRAD23, polyubiquitin and with negative and positive regulators of stress signaling, i.e., OsMBP1.2, OsDRIP2, OsSCP and OsAMTR1. The A20 domain was found to be crucial for most interactions but insufficient for all interactions tested. Overall, our investigations suggest that OsSAP10 is an important candidate for improving water-deficit stress tolerance in plants, and positively regulates ABA and WDS signaling via protein-protein interactions and modulation of endogenous genes expression in ABA-dependent manner.


Asunto(s)
Ácido Abscísico , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal , Transducción de Señal , Arabidopsis/genética , Arabidopsis/fisiología , Oryza/genética , Oryza/fisiología , Oryza/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Transducción de Señal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Germinación/genética , Germinación/efectos de los fármacos , Sequías , Agua/metabolismo , Deshidratación , Plantones/genética , Plantones/fisiología
16.
Plant Cell Rep ; 43(9): 209, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115578

RESUMEN

KEY MESSAGE: The C. roseus ZCTs are jasmonate-responsive, can be induced by CrMYC2a, and can act as significant regulators of the terpenoid indole alkaloid pathway when highly expressed. Catharanthus roseus is the sole known producer of the anti-cancer terpenoid indole alkaloids (TIAs), vinblastine and vincristine. While the enzymatic steps of the pathway have been elucidated, an understanding of its regulation is still emerging. The present study characterizes an important subgroup of Cys2-His2 zinc finger transcription factors known as Zinc finger Catharanthus Transcription factors (ZCTs). We identified three new ZCT members (named ZCT4, ZCT5, and ZCT6) that clustered with the putative repressors of the TIA pathway, ZCT1, ZCT2, and ZCT3. We characterized the role of these six ZCTs as potential redundant regulators of the TIA pathway, and their tissue-specific and jasmonate-responsive expression. These ZCTs share high sequence conservation in their two Cys2-His2 zinc finger domains but differ in the spacer length and sequence between these zinc fingers. The transient overexpression of ZCTs in seedlings significantly repressed the promoters of the terpenoid (pLAMT) and condensation branch (pSTR1) of the TIA pathway, consistent with that previously reported for ZCT1, ZCT2, and ZCT3. In addition, ZCTs significantly repressed and indirectly activated several promoters of the vindoline pathway (not previously studied). The ZCTs differed in their tissue-specific expression but similarly increased with jasmonate in a dosage-dependent manner (except for ZCT5). We showed significant activation of the pZCT1 and pZCT3 promoters by the de-repressed CrMYC2a, suggesting that the jasmonate-responsive expression of the ZCTs can be mediated by CrMYC2a. In summary, the C. roseus ZCTs are jasmonate-responsive, can be induced by CrMYC2a, and can act as significant regulators of the TIA pathway when highly expressed.


Asunto(s)
Catharanthus , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Proteínas de Plantas , Factores de Transcripción , Catharanthus/genética , Catharanthus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Oxilipinas/metabolismo , Oxilipinas/farmacología , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Dedos de Zinc CYS2-HIS2/genética , Plantas Modificadas Genéticamente , Alcaloides de Triptamina Secologanina/metabolismo , Filogenia , Dedos de Zinc
17.
J Virol ; 98(9): e0111424, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39194213

RESUMEN

Zinc finger protein 36 (ZFP36) is a key regulator of inflammatory and cytokine production. However, the interplay between swine zinc-finger protein 36 (sZFP36) and foot-and-mouth disease virus (FMDV) has not yet been reported. Here, we demonstrate that overexpression of sZFP36 restricted FMDV replication, while the knockdown of sZFP36 facilitated FMDV replication. To subvert the antagonism of sZFP36, FMDV decreased sZFP36 protein expression through its non-structural protein 3C protease (3Cpro). Our results also suggested that 3Cpro-mediated sZFP36 degradation was dependent on its protease activity. Further investigation revealed that both N-terminal and C-terminal-sZFP36 could be degraded by FMDV and FMDV 3Cpro. In addition, both N-terminal and C-terminal-sZFP36 decreased FMDV replication. Moreover, sZFP36 promotes the degradation of FMDV structural proteins VP3 and VP4 via the CCCH-type zinc finger and NES domains of sZFP36. Together, our results confirm that sZFP36 is a host restriction factor that negatively regulates FMDV replication.IMPORTANCEFoot-and-mouth disease (FMD) is an infectious disease of animals caused by the pathogen foot-and-mouth disease virus (FMDV). FMD is difficult to prevent and control because there is no cross-protection between its serotypes. Thus, we designed this study to investigate virus-host interactions. We first demonstrate that swine zinc-finger protein 36 (sZFP36) impaired FMDV structural proteins VP3 and VP4 to suppress viral replication. To subvert the antagonism of sZFP36, FMDV and FMDV 3Cpro downregulate sZFP36 expression to facilitate FMDV replication. Taken together, the present study reveals a previously unrecognized antiviral mechanism for ZFP36 and elucidates the role of FMDV in counteracting host antiviral activity.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Replicación Viral , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/metabolismo , Animales , Porcinos , Fiebre Aftosa/virología , Fiebre Aftosa/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteasas Virales 3C/metabolismo , Línea Celular , Interacciones Huésped-Patógeno , Células HEK293 , Proteolisis , Factor 1 de Respuesta al Butirato/metabolismo , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética
18.
BMC Genomics ; 25(1): 779, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128988

RESUMEN

Catalpa bungei, a tree indigenous to China, is renowned for its superior timber quality and as an ornamental in horticulture. To promote the cultivation of C. bungei in cold regions and expand its distribution, enhancing its cold tolerance is essential. The CCCH gene family is widely involved in plant growth, development, and expression under stress conditions, including low-temperature stress. However, a comprehensive identification and analysis of these genes have not yet been conducted. This study aims to identify key cold-tolerance-related genes within the CCCH gene family of C. bungei, providing the necessary theoretical support for its expansion in cold regions. In this study, 61 CCCH genes within C. bungei were identified and characterized. Phylogenetic assessment divided these genes into 9 subfamilies, with 55 members mapped across 16 chromosomes. The analysis of gene structures and protein motifs indicated that members within the same subfamily shared similar exon/intron distribution and motif patterns, supporting the phylogenetic classification. Collinearity analysis suggested that segmental duplications have played a significant role in the expansion of the C. bungei CCCH gene family. Notably, RNA sequencing analysis under 4 °C cold stress conditions identified CbuC3H24 and CbuC3H58 as exhibiting the most significant responses, highlighting their importance within the CCCH zinc finger family in response to cold stress. The findings of this study lay a theoretical foundation for further exploring the mechanisms of cold tolerance in C. bungei, providing crucial insights for its cultivation in cold regions.


Asunto(s)
Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Respuesta al Choque por Frío/genética , Proteínas de Plantas/genética , Frío , Perfilación de la Expresión Génica , Genes de Plantas
19.
Proc Natl Acad Sci U S A ; 121(33): e2401217121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39102544

RESUMEN

X-linked dystonia-parkinsonism (XDP) is a severe neurodegenerative disorder resulting from an inherited intronic SINE-Alu-VNTR (SVA) retrotransposon in the TAF1 gene that causes dysregulation of TAF1 transcription. The specific mechanism underlying this dysregulation remains unclear, but it is hypothesized to involve the formation of G-quadruplexes (G4) structures within the XDP-SVA that impede transcription. In this study, we show that ZNF91, a critical repressor of SVA retrotransposons, specifically binds to G4-forming DNA sequences. Further, we found that genetic deletion of ZNF91 exacerbates the molecular phenotype associated with the XDP-SVA insertion in patient cells, while no difference was observed when ZNF91 was deleted from isogenic control cells. Additionally, we observed a significant age-related reduction in ZNF91 expression in whole blood and brain, indicating a progressive loss of repression of the XDP-SVA in XDP. These findings indicate that ZNF91 plays a crucial role in controlling the molecular phenotype associated with XDP. Since ZNF91 binds to G4-forming DNA sequences in SVAs, this suggests that interactions between ZNF91 and G4-forming sequences in the XDP-SVA minimize the severity of the molecular phenotype. Our results showing that ZNF91 expression levels significantly decrease with age provide a potential explanation for the age-related progressive neurodegenerative character of XDP. Collectively, our study provides important insights into the protective role of ZNF91 in XDP pathogenesis and suggests that restoring ZNF91 expression, destabilization of G4s, or targeted repression of the XDP-SVA could be future therapeutic strategies to prevent or treat XDP.


Asunto(s)
Trastornos Distónicos , Enfermedades Genéticas Ligadas al Cromosoma X , Fenotipo , Humanos , Trastornos Distónicos/genética , Trastornos Distónicos/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , G-Cuádruplex , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Masculino , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Retroelementos/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo
20.
Mol Oral Microbiol ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206509

RESUMEN

BACKGROUND: The PG1037 gene is part of the uvrA-PG1037-pcrA operon in Porphyromonas gingivalis. It encodes for a protein of unknown function upregulated under hydrogen peroxide (H2O2)-induced oxidative stress. Bioinformatic analysis shows that PG1037 has a zinc-finger motif, two peroxidase motifs, and one cytidylate kinase domain. The aim of this study is to characterize further the role of the PG1037 recombinant protein in the unique 8-oxoG repair system in P. gingivalis. MATERIALS AND METHODS: PG1037 recombinant proteins with deletions in the zinc-finger or peroxidase motifs were created. Electrophoretic mobility shift assays were used to evaluate the ability of the recombinant proteins to bind 8-oxoG-containing oligonucleotides. Zinc binding, peroxidase, and Fenton reaction assays were used to assess the functional roles of the rPG1037 protein. A bacterial adenylate cyclase two-bride assay was used to identify the partner protein of PG1037 in the repair of 8-oxoG. RESULTS: The recombinant PG1037 (rPG1037) protein carrying an N-terminal His-tag demonstrated an ability to recognize and bind 8-oxoG-containing oligonucleotide. In contrast to the wild-type rPG1037 protein, the zinc-finger motif deletion resulted in the loss of zinc and 8-oxoG binding activities. A deletion of the peroxidase motif-1 showed a decrease in peroxidase activity. Using a bacterial adenylate cyclase two-hybrid system, there was no observed protein-protein interaction of PG1037 with UvrA (PG1036), PcrA (PG1038), or mismatch repair system proteins. CONCLUSIONS: Taken together, the results show that PG1037 is an important member of a novel mechanism that recognizes and repairs oxidative stress-induced DNA damage in P. gingivalis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA