Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 972267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325016

RESUMEN

Antibiotic resistance (AR) is one of the greatest human and clinical challenges associated with different pathogenic organisms. However, in recent years it has also become an environmental problem due to the widespread use of antibiotics in humans and livestock activities. The ability to resist antibiotics comes from antibiotic resistance genes (ARGs) and our understanding of their presence in coastal environments is still limited. Therefore, the objective of the present study was to explore the presence and possible differences in the microbial resistome of four sites from the Yucatan coast through the evaluation of the composition and abundance of ARGs using a high-throughput analysis of metatranscriptomic sequences. In total, 3,498 ARGs were uncovered, which participate in the resistance to tetracycline, macrolide, rifamycin, fluoroquinolone, phenicol, aminoglycoside, cephalosporin, and other antibiotics. The molecular mechanisms of these ARGs were mainly efflux pump, antibiotic target alteration and antibiotic target replacement. In the same way, ARGs were detected in the samples but showing dissimilar enrichment levels. With respect to the sampling sites, the ARGs were present in all the samples collected, either from preserved or contaminated areas. Importantly, sediments of the preserved area of Dzilam presented the second highest level of ARGs detected, probably as a consequence of the antibiotics dragged to the coast by submarine groundwater discharge. In general, the resistance to a single antibiotic was greater than multiresistance, both at the level of gene and organisms; and multiresistance in organisms is acquired mainly by recruiting different monoresistance genes. To our knowledge, this is the first study that describes and compares the resistome of different samples of the Yucatan coast. This study contributes to generating information about the current state of antibiotic resistance on the Yucatan coasts for a better understanding of ARGs dissemination and could facilitate the management of ARGs pollution in the environment.

2.
Toxins (Basel) ; 12(6)2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466531

RESUMEN

Prokaryotes represent a source of both biotechnological and pharmaceutical molecules of importance, such as nonribosomal peptides (NRPs). NRPs are secondary metabolites which their synthesis is independent of ribosomes. Traditionally, obtaining NRPs had focused on organisms from terrestrial environments, but in recent years marine and coastal environments have emerged as an important source for the search and obtaining of nonribosomal compounds. In this study, we carried out a metataxonomic analysis of sediment of the coast of Yucatan in order to evaluate the potential of the microbial communities to contain bacteria involved in the synthesis of NRPs in two sites: one contaminated and the other conserved. As well as a metatranscriptomic analysis to discover nonribosomal peptide synthetases (NRPSs) genes. We found that the phyla with the highest representation of NRPs producing organisms were the Proteobacteria and Firmicutes present in the sediments of the conserved site. Similarly, the metatranscriptomic analysis showed that 52% of the sequences identified as catalytic domains of NRPSs were found in the conserved site sample, mostly (82%) belonging to Proteobacteria and Firmicutes; while the representation of Actinobacteria traditionally described as the major producers of secondary metabolites was low. It is important to highlight the prediction of metabolic pathways for siderophores production, as well as the identification of NRPS's condensation domain in organisms of the Archaea domain. Because this opens the possibility to the search for new nonribosomal structures in these organisms. This is the first mining study using high throughput sequencing technologies conducted in the sediments of the Yucatan coast to search for bacteria producing NRPs, and genes that encode NRPSs enzymes.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/genética , Sedimentos Geológicos/microbiología , Microbiota , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos/genética , Péptido Sintasas/genética , Transcriptoma , Bacterias/clasificación , Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Péptido Sintasas/metabolismo , Filogenia , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA