Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Pak J Biol Sci ; 27(7): 365-372, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39206470

RESUMEN

<b>Background and Objective:</b> Organic fertilizer is a source of nutrition for plants which is an alternative to inorganic fertilizer. Liquid organic fertilizer (LOF) which comes from coconut fiber and banana LOF which comes from banana stems from which the fruit has been removed, so that wasted plant residue can be used as fertilizer. The study aimed to obtain the best type of LOF and concentration in increasing the growth and yield of the Batang Piaman rice variety using the SRI method. <b>Materials and Methods:</b> The research was conducted from June to December, 2023 in Padang City, West Sumatra. The method used was an experiment with a Randomized Complete Block Design (RCBD) in nested with each treatment consisting of 3 groups. The treatment consisted of LOF types at two levels (banana stems and coconut fiber) and LOF concentrations at seven levels (0, 50, 100, 150, 200, 250 and 300 mL/L). Observational data were analysed by variance analysis with F test at 5% real level, but if there were differences, it was continued with DMRT further test at 5% real level by STAR IRRI Philippine software (Philippine). <b>Results:</b> The results obtained were that LOF coconut fiber provided better growth components, yield components and physiological components than banana stem LOF with the best concentration, on the provision of LOF coconut fiber 100 mL/L on the number of rice plant tillers and stomatal density and concentration of 200 mL/L on the number of productive tillers. <b>Conclusion:</b> The application of LOF coconut fiber is better for the growth and yield of rice plants of the Batang Piaman variety compared to the administration of LOF banana stems by applying coconut fiber liquid organic fertilizer with a concentration of 100 mL/L, it is recommended to add coconut fiber LOF to rice fields to increase growth and yield.


Asunto(s)
Fertilizantes , Musa , Oryza , Oryza/crecimiento & desarrollo , Musa/crecimiento & desarrollo , Cocos/crecimiento & desarrollo , Agricultura/métodos
2.
Plants (Basel) ; 13(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39065430

RESUMEN

Drip fertigation (DF) is a widely used technology to increase grain yield with water and fertilizer conservation. However, the mechanism of high grain yield (GY) under DF is still unclear. Here, a four-year field experiment assessed the impacts of four treatments (i.e., conventional irrigation and nitrogen application, CK; drip irrigation with conventional nitrogen fertilization, DI; split-nitrogen fertigation with conventional irrigation, SF; and drip fertigation, DF) on maize phenology, leaf photosynthetic rates, grain filling processes, plant biomass, and GY. The results showed that DF significantly increased maize GY by affecting phenology, grain filling traits, aboveground biomass (BIO) accumulation, and translocation. Specifically, DF significantly increased leaf chlorophyll content, which enhanced leaf photosynthetic rates, and together with an increase of leaf area index, promoted BIO accumulation. As a result, the BIO at the silking stage of DF increased by 29.5%, transported biomass increased by 109.2% (1.2 t ha-1), and the accumulation of BIO after silking increased by 23.1% (1.7 t ha-1) compared with CK. Meanwhile, DF prolonged grain filling days, significantly increased the grain weight of 100 kernels, and promoted GY increase. Compared with CK, the four-year averaged GY and BIO increased by 34.3% and 26.8% under DF; a 29.7%, 46.1%, and 24.2% GY increase and a 30.7%, 39.5%, and 29.9% BIO increase were contributed by irrigation, nitrogen, and coupling effects of irrigation and nitrogen, respectively. These results reveal the high yield mechanism of drip-fertigated maize, and are of important significance for promoting the application of drip fertigation.

3.
BMC Plant Biol ; 24(1): 711, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060970

RESUMEN

BACKGROUND: The transition from vegetative to reproductive growth is a key factor in yield maximization. Sesame (Sesamum indicum), an indeterminate short-day oilseed crop, is rapidly being introduced into new cultivation areas. Thus, decoding its flowering mechanism is necessary to facilitate adaptation to environmental conditions. In the current study, we uncover the effect of day-length on flowering and yield components using F 2 populations segregating for previously identified quantitative trait loci (Si_DTF QTL) confirming these traits. RESULTS: Generally, day-length affected all phenotypic traits, with short-day preceding days to flowering and reducing yield components. Interestingly, the average days to flowering required for yield maximization was 50 to 55 days, regardless of day-length. In addition, we found that Si_DTF QTL is more associated with seed-yield and yield components than with days to flowering. A bulk-segregation analysis was applied to identify additional QTL differing in allele frequencies between early and late flowering under both day-length conditions. Candidate genes mining within the identified major QTL intervals revealed two flowering-related genes with different expression levels between the parental lines, indicating their contribution to sesame flowering regulation. CONCLUSIONS: Our findings demonstrate the essential role of flowering date on yield components and will serve as a basis for future sesame breeding.


Asunto(s)
Flores , Sitios de Carácter Cuantitativo , Sesamum , Sesamum/genética , Sesamum/crecimiento & desarrollo , Sesamum/fisiología , Flores/crecimiento & desarrollo , Flores/genética , Flores/fisiología , Fenotipo , Fotoperiodo
4.
Front Plant Sci ; 15: 1425945, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070908

RESUMEN

Persistent organic pollutants seriously affect the growth and development of crops. 1,2,4-Trichlorobenzene (TCB), as one of the most widely used chlorobenzenes, can affect the yield of japonica rice. However, existing research on the effect of TCB on japonica rice yield is not in-depth, and a basic understanding of commonality has not yet been formed. In this study, 28 conventional japonica rice varieties were selected to investigate the effects of TCB stress on their yield, yield composition, and TCB accumulation. This study also evaluated the efficiency of conventional tolerance indices in evaluating the TCB stress tolerance of japonica rice. The results showed that TCB caused sustained inhibition of the growth of japonica rice, which was considerably manifested in plant height, root length, soil plant analysis development (SPAD), and dry weight at different growth stages. Under TCB stress, TCB accumulation in various tissues of japonica rice increased sharply. TCB stress reduces the yield of japonica rice by reducing the number of panicles per hill, the number of spikelets per panicle, the grain filling percentage, and the grain weight. Overall, the results of this study indicate that TCB stress can cause a decrease in the yield of japonica rice, and the decrease in panicle number is the main reason. The conventional tolerance index can effectively evaluate the tolerance of japonica rice to TCB. The results of this study are substantial for the breeding and cultivation of japonica rice.

5.
Front Plant Sci ; 15: 1393349, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006958

RESUMEN

Introduction: Heat stress negatively affects wheat production in several ways, mainly by reducing growth rate, photosynthetic capacity and reducing spike fertility. Modeling stress response means analyzing simultaneous relationships among traits affecting the whole plant response and determinants of grain yield. The aim of this study was to dissect the diverse impacts of heat stress on key yield traits and to identify the most promising sources of alleles for heat tolerance. Methods: We evaluated a diverse durum wheat panel of 183 cultivars and breeding lines from worldwide, for their response to long-term heat stress under field conditions (HS) with respect to non stress conditions (NS), considering phenological traits, grain yield (GY) and its components as a function of the timing of heat stress and climatic covariates. We investigated the relationships among plant and environmental variables by means of a structural equation model (SEM) and Genetic SEM (GSEM). Results: Over two years of experiments at CENEB, CIMMYT, the effects of HS were particularly pronounced for the normalized difference vegetation index, NDVI (-51.3%), kernel weight per spike, KWS (-40.5%), grain filling period, GFP (-38.7%), and GY (-56.6%). Average temperatures around anthesis were negatively correlated with GY, thousand kernel weight TKW and test weight TWT, but also with spike density, a trait determined before heading/anthesis. Under HS, the correlation between the three major determinants of GY, i.e., fertile spike density, spike fertility and kernel size, were of noticeable magnitude. NDVI measured at medium milk-soft dough stage under HS was correlated with both spike fertility and grain weight while under NS it was less predictive of grain weight but still highly correlated with spike fertility. GSEM modeling suggested that the causal model of performance under HS directly involves genetic effects on GY, NDVI, KWS and HD. Discussion: We identified consistently suitable sources of genetic resistance to heat stress to be used in different durum wheat pre-breeding programs. Among those, Desert Durums and CIMMYT'80 germplasm showed the highest degree of adaptation and capacity to yield under high temperatures and can be considered as a valuable source of alleles for adaptation to breed new HS resilient cultivars.

6.
Sci Rep ; 14(1): 5991, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472315

RESUMEN

In this study, the genetic and molecular diversity of 60 quinoa accessions was assessed using agronomically important traits related to grain yield as well as microsatellite (SSR) markers, and informative markers linked to the studied traits were identified using association study. The results showed that most of the studied traits had a relatively high diversity, but grain saponin and protein content showed the highest diversity. High diversity was also observed in all SSR markers, but KAAT023, KAAT027, KAAT036, and KCAA014 showed the highest values for most of the diversity indices and can be introduced as the informative markers to assess genetic diversity in quinoa. Population structure analysis showed that the studied population probably includes two subclusters, so that out of 60 quinoa accessions, 29 (48%) and 23 (38%) accessions were assigned to the first and second subclusters, respectively, and eight (13%) accessions were considered as the mixed genotypes. The study of the population structure using Structure software showed two possible subgroups (K = 2) in the studied population and the results of the bar plot confirmed it. Association study using the general linear model (GLM) and mixed linear model (MLM) identified the number of 35 and 32 significant marker-trait associations (MTAs) for the first year (2019) and 37 and 35 significant MTAs for the second year (2020), respectively. Among the significant MTAs identified for different traits, the highest number of significant MTAs were obtained for grain yield and 1000-grain weight with six and five MTAs, respectively.


Asunto(s)
Chenopodium quinoa , Fenotipo , Genotipo , Grano Comestible/genética
7.
Sci Rep ; 14(1): 6672, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509150

RESUMEN

Soybean, belonging to legumes, has a specific ability to biological nitrogen fixation, which can be reinforced by seeds inoculation. However, support with a starter dose of mineral nitrogen fertilizer may be necessary to achieve high seed yields. A four-year field experiment was conducted to determine the effect of mineral N fertilization (0, 30, 60 kg ha-1), seed inoculation with two commercial inoculants and combinations of these treatments on yield components and yielding of soybean in conditions of south-western part of Poland. The synergistic effect of mineral fertilization at dose 30 kg ha-1 and inoculation on soybean productivity was the most beneficial. Similar effects were observed when 60 kg N ha-1 was applied both separately and with inoculation. However, due to the environmental impact of mineral fertilizers and to promote plants to biological nitrogen fixation (BNF), it is advisable to use lower doses of N fertilizer (at 30 kg ha-1) and inoculate soybean seeds in agro- climatic conditions of south-western Poland. Therefore, based on this study we recommend to apply starter dose of N and inoculation.


Asunto(s)
Glycine max , Nitrógeno , Fertilizantes , Polonia , Semillas , Minerales , Fertilización
8.
Front Plant Sci ; 14: 1276178, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046605

RESUMEN

The olive (Olea europaea L.) is the most cultivated tree crop in the Mediterranean and among the most cultivated tree crops worldwide. Olive yield is obtained by the product of fruit number and fruit size; therefore, understanding fruit development, in terms of both number and size, is commercially and scientifically relevant. This article reviews the literature on fruit development, from the flower to the mature fruit, considering factors that affect both fruit size and number. The review focuses on olive but includes literature on other species when relevant. The review brings the different factors affecting different phases of fruit development, addressed separately in the literature, under a single frame of interpretation. It is concluded that the different mechanisms regulating the different phases of fruit development, from pistil abortion to fruit set and fruit size, can be considered as different aspects of the same overall strategy, that is, adjusting fruit load to the available resources while striving to achieve the genetically determined fruit size target and the male and female fitness targets.

9.
Biomolecules ; 13(12)2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38136593

RESUMEN

Genetic diversity and marker-trait association with yield-related components were assessed in 39 chickpea accessions from a germplasm collection with either spring or autumn-sown seeds in South-Eastern Kazakhstan. Chickpea accessions originated from Azerbaijan, Germany, Kazakhstan, Moldova, Russia, Türkiye, Ukraine, Syria, and the International Center for Agricultural Research in the Dry Areas (ICARDA). Eleven SSR markers were used for molecular genotyping. Yield and yield components were evaluated in nine traits in experiments with spring and autumn seed sowing. The number of alleles of polymorphic markers varied from 2 to 11. The greatest polymorphism was found in the studied chickpea genotypes using SSR marker TA22 (11 alleles), while NCPGR6 and NCPGR12 markers were monomorphic. In the studied chickpea accessions, unique alleles of the SSR loci TA14, TA46, TA76s, and TA142 were found that were not previously described by other authors. An analysis of correlation relationships between yield-related traits in chickpea revealed the dependence of yield on plant height, branching, and the setting of a large number of beans. These traits showed maximal values in experiments with chickpea plants from autumn seed sowing. An analysis of the relationship between the SSR markers applied and morphological yield-related traits revealed several informative markers associated with important traits, such as plant height, height to first pod, number of branches, number of productive nodes, number of pods per plant, hundred seed weight, seed weight per plant, and seed yield.


Asunto(s)
Cicer , Cicer/genética , Genotipo , Fenotipo , Biomarcadores , Alemania
10.
Open Life Sci ; 18(1): 20220792, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152581

RESUMEN

Alfalfa (Medicago sativa L.) is known as the "king of forages". The aim of the current study is to determine the optimum planting density as the key cultivation technique for high yield of alfalfa seed. Alfalfa variety (Longmu 801) was planted in experimental fields from 2014 to 2017. In the planting density test, the row spacing was 65, 80, and 95 cm, and the plant spacing was 30, 45, 60, 75, and 90 cm. The seed yield and yield components in the row spacing and plant spacing tests were measured. On the basis of 3 years average of the experimental data, the highest seed yield of 225.49 kg ha-1 was obtained with row spacing vs plant spacing of 65 and 60 cm, respectively. Correlation analysis showed a significant positive correlation between the racemes per stem, pods per raceme, pods per stem, seeds per pod, and the seed yield. These results suggested that Longmu 801 should be cultivated with 65 cm row spacing and 60 cm plant spacing to maximize seed yields in western Heilongjiang areas.

11.
BMC Plant Biol ; 23(1): 593, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38008746

RESUMEN

BACKGROUND: Due to the factor of water deficit, which has placed human food security at risk by causing a 20% annual reduction in agricultural products, addressing this growing peril necessitates the adoption of inventive strategies aimed at enhancing plant tolerance. One such promising approach is employing elicitors such as 24-epibrassinolide (EBR) and yeast extract, which are potent agents capable of triggering robust defense responses in plants. By employing these elicitors, crops can develop enhanced adaptive mechanisms to combat water deficit and improve their ability to withstand drought condition. This study investigates the impact of different levels of EBR (0, 5, 10 µm) and yeast extract (0 and 12 g/l) on enhancing the tolerance of cowpea to water deficit stress over two growing seasons. RESULTS: The findings of this study demonstrate that, the combined application of EBR (especially 10 µm) and yeast extract (12 g/l) can increase seed yield (18%), 20-pod weight (16%), the number of pods per plant (18%), total chlorophyll content (90%), and decrease malondialdehyde content (45%) in cowpea, compared to plants grown under water deficit stress without these treatments. Upon implementing these treatments, impressive results were obtained, with the highest recorded values observed for the seed yield (1867.55 kg/ha), 20-pod weight (16.29 g), pods number per plant (9), and total chlorophyll content (19.88 mg g-1 FW). The correlation analysis indicated a significant relationship between the seed yield, and total chlorophyll (0.74**), carotenoids (0.82**), weight of 20 seeds (0.67**), and number of pods (0.90**). These traits should be prioritized in cowpea breeding programs focusing on water deficit stress. CONCLUSIONS: The comprehensive exploration of the effects of EBR and yeast extract across various levels on cowpea plants facing water deficit stress presents a pivotal contribution to the agricultural domain. This research illuminates a promising trajectory for future agricultural practices and users seeking sustainable solutions to enhance crops tolerance. Overall, the implications drawn from this study contribute significantly towards advancing our understanding of plant responses to water deficit stress while providing actionable recommendations for optimizing crop production under challenging environmental conditions.


Asunto(s)
Vigna , Agua , Humanos , Fitomejoramiento , Clorofila , Deshidratación , Plantas
12.
Front Genet ; 14: 1221148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790706

RESUMEN

Multi-parent populations contain valuable genetic material for dissecting complex, quantitative traits and provide a unique opportunity to capture multi-allelic variation compared to the biparental populations. A multi-parent advanced generation inter-cross (MAGIC) B-line (MBL) population composed of 708 F6 recombinant inbred lines (RILs), was recently developed from four diverse founders. These selected founders strategically represented the four most prevalent botanical races (kafir, guinea, durra, and caudatum) to capture a significant source of genetic variation to study the quantitative traits in grain sorghum [Sorghum bicolor (L.) Moench]. MBL was phenotyped at two field locations for seven yield-influencing traits: panicle type (PT), days to anthesis (DTA), plant height (PH), grain yield (GY), 1000-grain weight (TGW), tiller number per meter (TN) and yield per panicle (YPP). High phenotypic variation was observed for all the quantitative traits, with broad-sense heritabilities ranging from 0.34 (TN) to 0.84 (PH). The entire population was genotyped using Diversity Arrays Technology (DArTseq), and 8,800 single nucleotide polymorphisms (SNPs) were generated. A set of polymorphic, quality-filtered markers (3,751 SNPs) and phenotypic data were used for genome-wide association studies (GWAS). We identified 52 marker-trait associations (MTAs) for the seven traits using BLUPs generated from replicated plots in two locations. We also identified desirable allelic combinations based on the plant height loci (Dw1, Dw2, and Dw3), which influences yield related traits. Additionally, two novel MTAs were identified each on Chr1 and Chr7 for yield traits independent of dwarfing genes. We further performed a multi-variate adaptive shrinkage analysis and 15 MTAs with pleiotropic effect were identified. The five best performing MBL progenies were selected carrying desirable allelic combinations. Since the MBL population was designed to capture significant diversity for maintainer line (B-line) accessions, these progenies can serve as valuable resources to develop superior sorghum hybrids after validation of their general combining abilities via crossing with elite pollinators. Further, newly identified desirable allelic combinations can be used to enrich the maintainer germplasm lines through marker-assisted backcross breeding.

13.
Plants (Basel) ; 12(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37895992

RESUMEN

Cotton fiber yield depends on the density of fiber cell initials that form on the ovule epidermis. Fiber initiation is triggered by MYB-MIXTA-like transcription factors (GhMMLs) and requires a sucrose supply. Ethylene or its precursor ACC (1-aminocyclopropane-1-carboxylic acid) is suggested to affect fiber yield. The Gossypium hirsutum (L.) genome contains 35 ACS genes (GhACS) encoding ACC synthases. Here, we explored the role of a GhACS family member in the regulation of fiber initiation. Expression analyses showed that the GhACS6.3 gene pair was specifically expressed in the ovules during fiber initiation (3 days before anthesis to 5 days post anthesis, -3 to 5 DPA), especially at -3 DPA, whereas other GhACS genes were expressed at very low or undetectable levels. The expression profile of GhACS6.3 during fiber initial development was confirmed by qRT-PCR analysis. Transgenic lines overexpressing GhACS6.3 (GhACS6.3-OE) showed increased ACC accumulation in ovules, which promoted the formation of fiber initials and fiber yield components. This was accompanied by increased transcript levels of GhMML3 and increased transcript levels of genes encoding sucrose transporters and sucrose synthase. These findings imply that GhACS6.3 activation is required for fiber initial development. Our results lay the foundation for further research on increasing cotton fiber production.

14.
Front Plant Sci ; 14: 1236576, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881618

RESUMEN

Flowering time and fruit yield are important traits in watermelon crop improvement. There is limited information on the inheritance and genomic loci underlying flowering time and yield performance, especially in citron watermelon. A total of 125 citron watermelon accessions were evaluated in field trials over two growing seasons for days to male and female flowers, fruit count, fruit weight, and fruit yield. The germplasm was genotyped with more than two million single-nucleotide polymorphism (SNP) markers generated via whole-genome resequencing. Trait mapping was conducted using a genome-wide association study (GWAS). Broad-sense heritability for all traits ranged from moderate to high, indicating that genetic improvement through breeding and selection is feasible. Significant marker-trait associations were uncovered for days to female flower (chromosomes Ca04, Ca05, Ca08, and Ca09), fruit count (on Ca02, Ca03, and Ca05), fruit weight (on Ca02, Ca06, Ca08, Ca10, and Ca11), and fruit yield on chromosomes Ca05, Ca07, and Ca09. The phenotypic variation explained by the significant SNPs ranged from 1.6 to 25.4, highlighting the complex genetic architecture of the evaluated traits. Candidate genes relevant to flowering time and fruit yield component traits were uncovered on chromosomes Ca02, Ca04, Ca05, Ca06, Ca09, and Ca11. These results lay a foundation for marker-assisted trait introgression of flowering time and fruit yield component traits in watermelons.

15.
Plants (Basel) ; 12(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653855

RESUMEN

In order to grow crops that reduce the negative impact on the environment, as well as meet the nutritional needs of the increasing human population, it is necessary to include new and more sustainable production strategies into current agricultural systems. The aim of our study was to evaluate the optimal nutritional conditions of semi-leafless pea productivity and ascertain the influence of meteorological factors on the productivity of these plants under boreal environmental conditions. The test involved three semi-leafless pea varieties, one of which was a new variety, and eight N fertilization treatments were used: (1) without fertilizers (N0), (2) without N fertilizers (N0), (3) N15, (4) N30, (5) N45, (6) N15+15, (7) N60, and (8) N60. Plots of the second-seventh treatment received a base application of P40K80; the eighth treatment received P80K160. Fertilizer efficiency depended on the meteorological conditions. Based on their productivity, the pea varieties were arranged in the following descending order: Ieva DS ˃ Respect ˃ Simona. Compared with unfertilized peas, NPK fertilizers enhanced the seed yield by 10.6-12.9% on average. Splitting the N30 rate and applying N60, under a background of P40K80, was not efficient. The optimal rate of N15-45P40K80 fertilizers for peas was determined. Meteorological factors significantly influenced seed yield by 75.2%, 44.1%, and 79.9% for varieties Ieva DS, Simona, and Respect, respectively.

16.
Heliyon ; 9(8): e18982, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37600429

RESUMEN

Drastic and continuous decline in cane yields has become a major threat to sustainable sugarcane production in Ethiopia. Among the causes for the decline are the inefficient and ineffective system of monitoring sugarcane plantations. Adopting satellite-based crop monitoring through the Landviewer platform may circumvent this problem. However, the reliability of vegetation indexes calculated by the platform is unknown and thus requires evaluation. Accordingly, we tested the accuracy of selected Landviewer Calculated Vegetation Indexes (LCVIs) on three major sugarcane varieties and two cropping types. The goodness-of-fit of the sigmoid curve to the LCVIs profile of sugarcane was evaluated. The correlations between LCVIs and yield components, LCVIs and fractional green canopy cover (FGCC), as well as the time-serious Normalized Difference Vegetation Index (NDVI) and yields, were also analysed. We found that the goodness-of-fit of the sigmoid curve was significant (p < 0.001), with 84%-95% accuracy in all the indexes. The majority of LCVIs showed significant (p < 0.05) relationships with yield components and FGCC. The time-series NDVI also demonstrated a significant relationship with cane yield (R2 = 0.73-0.85) at the age of 10 months and above. The accuracy level of LCVIs varies with varieties and crop types, but the Normalized Difference Phenology Index (NDPI), Soil Adjusted Vegetation Index (SAVI), and NDVI were identified as the most consistent and effective LCVIs for sugarcane monitoring. Therefore, the accuracy of LCVIs was dependable and can be used effectively in monitoring sugarcane plantations to tackle the problem of continuous decline in the yield of the crop.

17.
Plants (Basel) ; 12(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37376014

RESUMEN

Ensuring food security with severe shortages of freshwater and drastic changes in climatic conditions in arid countries requires the urgent development of feasible and user-friendly strategies. Relatively little is known regarding the impacts of the co-application (Co-A) of salicylic acid (SA), macronutrients (Mac), and micronutrients (Mic) through foliar (F) and soil (S) application strategies on field crops under arid and semiarid climatic conditions. A two-year field experiment was designed to compare the impacts of seven (Co-A) treatments of this strategy, including a control, FSA + Mic, FSA + Mac, SSA + FMic, SSA + FSA + Mic, SSA + Mic + FSA, and SSA + Mic + FMac + Mic on the agronomic performance, physiological attributes, and water productivity (WP) of wheat under normal (NI) and limited (LMI) irrigation conditions. The results reveal that the LMI treatment caused a significant reduction in various traits related to the growth (plant height, tiller and green leaf numbers, leaf area index, and shoot dry weight), physiology (relative water content and chlorophyll pigments), and yield components (spike length, grain weight and grain numbers per spike, thousand-grain weight, and harvest index) of wheat by 11.4-47.8%, 21.8-39.8%, and 16.4-42.3%, respectively, while WP increased by 13.3% compared to the NI treatment. The different Co-A treatments have shown a 0.2-23.7%, 3.6-26.7%, 2.3-21.6%, and 12.2-25.0% increase in various traits related to growth, physiology, yield, and WP, respectively, in comparison to the control treatment. The SSA+ FSA + Mic was determined as the best treatment that achieved the best results for all studied traits under both irrigation conditions, followed by FSA + Mic and SSA + Mic + FSA under LMI in addition to FSA + Mac under NI conditions. It can be concluded that the Co-A of essential plant nutrients along with SA accomplished a feasible, profitable, and easy-to-use strategy to attenuate the negative impacts of deficit irrigation stress, along with the further improvement in the growth and production of wheat under NI conditions.

18.
J Sci Food Agric ; 103(12): 5747-5753, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37079446

RESUMEN

BACKGROUND: Biochar can play a key role in improving paddy soil and productivity. However, there is limited information on the effects of biochar on rice quality and starch gelatinization. In this study, four rice straw biochar dosage treatments (0, 20, 40 and 60 g kg-1 ; CK, C20, C40 and C60, respectively) were set up to investigate rice yield components, rice processing, appearance and cooking quality, and starch gelatinization. RESULTS: Addition of biochar increased the effective panicle, grain number per panicle and seed setting rate. However, it decreased the 1000-grain weight, resulting in an increase in yield. In 2019, all the biochar treatments improved the head rice rate (9.13-11.42%), whereas in 2020 only the C20 treatment improved. Low biochar dosage had little effect on grain appearance. High biochar dosage significantly decreased the chalky rice rate by 21.47% and chalkiness by 19.44% in 2019. However, it significantly increased the chalky rice rate and chalkiness by 118.95% and 85.45% in 2020, respectively. Biochar significantly lowered the amylose content except for the C20 and C40 treatments in 2020, and the gel consistency. The C40 and C60 treatments significantly increased the peak and breakdown viscosities and decreased the setback viscosity compared with CK. Correlation analysis showed that starch gelatinization characteristics were significantly correlated with the head rice rate, chalky rate and amylose content. CONCLUSION: A lower biochar dosage can improve the yield and milled rice rate and maintain a higher quality of appearance, whereas a higher biochar dosage can significantly improve starch gelatinization. © 2023 Society of Chemical Industry.


Asunto(s)
Oryza , Almidón , Almidón/química , Amilosa/análisis , Oryza/química , Viscosidad , Grano Comestible/química
19.
Development ; 150(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37039060

RESUMEN

The utilization of reduced plant height genes Rht-B1b and Rht-D1b, encoding homeologous DELLA proteins, led to the wheat Green Revolution (GR). However, the specific functions of GR genes in yield determination and the underlying regulatory mechanisms remained unknown. Here, we validated that Rht-B1b, as a representative of GR genes, affects plant architecture and yield component traits. Upregulation of Rht-B1b reduced plant height, leaf size and grain weight, but increased tiller number, tiller angle, spike number per unit area, and grain number per spike. Dynamic investigations showed that Rht-B1b increased spike number by improving tillering initiation rather than outgrowth, and enhanced grain number by promoting floret fertility. Rht-B1b reduced plant height by reducing cell size in the internodes, and reduced grain size or weight by decreasing cell number in the pericarp. Transcriptome analyses uncovered that Rht-B1b regulates many homologs of previously reported key genes for given traits and several putative integrators for different traits. These findings specify the pleiotropic functions of Rht-B1b in improving yield and provide new insights into the regulatory mechanisms underlying plant morphogenesis and yield formation.


Asunto(s)
Genes de Plantas , Triticum , Alelos , Fenotipo , Grano Comestible/metabolismo , Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Front Plant Sci ; 14: 1132108, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909445

RESUMEN

In many regions worldwide wheat (Triticum aestivum L.) plants experience terminal high temperature stress during the grain filling stage, which is a leading cause for single seed weight decrease and consequently for grain yield reduction. An approach to mitigate high temperature damage is to develop tolerant cultivars using the conventional breeding approach which involves identifying tolerant lines and then incorporating the tolerant traits in commercial varieties. In this study, we evaluated the terminal heat stress tolerance of 304 diverse elite winter wheat lines from wheat breeding programs in the US, Australia, and Serbia in controlled environmental conditions. Chlorophyll content and yield traits were measured and calculated as the percentage of non-stress control. The results showed that there was significant genetic variation for chlorophyll retention and seed weight under heat stress conditions. The positive correlation between the percent of chlorophyll content and the percent of single seed weight was significant. Two possible mechanisms of heat tolerance during grain filling were proposed. One represented by wheat line OK05723W might be mainly through the current photosynthesis since the high percentage of single seed weight was accompanied with high percentages of chlorophyll content and high shoot dry weight, and the other represented by wheat Line TX04M410164 might be mainly through the relocation of reserves since the high percentage of single seed weight was accompanied with low percentages of chlorophyll content and low shoot dry weight under heat stress. The tolerant genotypes identified in this study should be useful for breeding programs after further validation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA