Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 471: 134342, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38678705

RESUMEN

The accumulation of microplastics in reservoirs due to river damming has drawn considerable attention due to their potential impacts on elemental biogeochemical cycling at the watershed scale. However, the effects of plastisphere communities on the sulfur cycle in the large deep-water reservoir remain poorly understood. Here, we collected microplastics and their surrounding environmental samples in the water and sediment ecosystems of Xiaowan Reservoir and found a significant spatiotemporal pattern of microplastics and sulfur distribution in this Reservoir. Based on the microbial analysis, plastic-degrading taxa (e.g., Ralstonia, Rhodococcus) involved in the sulfur cycle were enriched in the plastisphere of water and sediment, respectively. Typical thiosulfate oxidizing bacteria Limnobacter acted as keystone species in the plastisphere microbial network. Sulfate, oxidation reduction potential and organic matter drove the variations of the plastisphere. Environmental filtration significantly affected the plastisphere communities, and the deterministic process dominated the community assembly. Furthermore, predicted functional profiles related to sulfur cycling, compound degradation and membrane transport were significantly enriched in the plastisphere. Overall, our results suggest microplastics as a new microbial niche exert different effects in water and sediment environments, and provide insights into the potential impacts of the plastisphere on the sulfur biogeochemical cycle in the reservoir ecosystem.


Asunto(s)
Sedimentos Geológicos , Microplásticos , Azufre , Contaminantes Químicos del Agua , Azufre/metabolismo , Microplásticos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Bacterias/metabolismo , Bacterias/clasificación , China
2.
Artículo en Inglés | MEDLINE | ID: mdl-36232199

RESUMEN

The cascade hydropower development in the Lancang River has significantly modified the hydrologic regime and is consequently responsible for many local environmental changes. The influence of the altered hydrological regime on heavy metals accumulation in the soils of the riparian zone was evaluated for the Xiaowan Reservoir (XWR). Specifically, this study focused on investigating the trace metals As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn and their concentrations in the riparian soils. Furthermore, this research aimed to examine the contamination levels of heavy metals by employing the geoaccumulation index (Igeo) and the ecological risk index (RI), respectively. Additionally, the relationship between heavy metals and water level fluctuations as caused by the dam operation was explored. The results showed that heavy metals deposits occurred in relatively low levels in the riparian soils of XWR, even though several of these metals were revealed to occur in higher concentrations than the local background value. The Igeo assessment indicated that the riparian soils exhibited slight pollution by Hg at the Zhujie wharf (ZJW) and Cr at the transect of the Heihui River (HHR), and moderate contamination by As at ZJW. Moreover, the RI revealed that As in riparian soils is moderately hazardous while Hg poses a high risk at ZJW. The polluted water and sediments from upstream and upland of the riparian zone may be contributing to the changed concentrations of heavy metal in the riparian soils. The present study inferred that the WLFs due to reservoir impoundment play a vital role in the accumulation of trace metals in the riparian zone. However, more exhaustive investigations are necessary for verification.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Contaminantes Químicos del Agua , Cadmio , China , Monitoreo del Ambiente , Sedimentos Geológicos , Plomo , Metales Pesados/análisis , Medición de Riesgo , Ríos , Suelo , Contaminantes del Suelo/análisis , Agua , Contaminantes Químicos del Agua/análisis
3.
Sci Total Environ ; 705: 135819, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31972948

RESUMEN

River damming is significant for hydropower production, but also alters the ecological conditions, and especially affects the microbial community. Sulfate-reducing prokaryotes (SRPs) make vital contributions to biogeochemical sulfur cycle, but the information on the effects of dam construction on the SRPs assemblage are unclear. Here, a comprehensive survey was conducted by collecting water and sediment samples along horizontal and vertical profiles from six sites at the Xiaowan Reservoir on the Lancang River, China. We used 16S rRNA gene amplicon sequencing and qPCR assay with dsrB gene to study the composition and activity of SRPs. The results indicated that river damming accumulated nutrients in the middle layer of the reservoir, and the impoundment provided an anaerobic and high nutrient available environment, which is beneficial for the survival of SRPs. The abundance and diversity of SRPs in water and sediments at the bottom of the reservoir were higher than those in the other sites. The network analyses revealed a synergistic effect between SRPs and other dominant bacteria in water column, which was more complex than in sediments. Moreover, a relatively higher sulfate reduction activity was found in the middle and lower layers of the water profile according to dsrB gene analysis.


Asunto(s)
Sulfatos/análisis , China , Sedimentos Geológicos , ARN Ribosómico 16S , Azufre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA