Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Int J Biol Macromol ; 280(Pt 1): 135717, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293630

RESUMEN

Ascorbate peroxidases (APXs) are antioxidant enzymes that play vital roles in redox homeostasis in plants. Citrus is susceptible to infection by Xanthomonas citri subsp. citri (Xcc), resulting in citrus bacterial canker (CBC). The present study used bioinformatic and expression analyses to investigate the APX family in Citrus sinensis. Bioinformatic research revealed the chromosomal locations, phylogeny, gene structure, promoter elements, functional domains, conserved motifs, and most likely physicochemical properties of the sequences. Six APXs clustered in three groups were identified, with each protein containing a single peroxidase domain. The promoter regions contained a variety of transcription factor-binding and hormone-response components. Xcc infection induced different CsAPX01 and CsAPX02 expressions in the CBC-susceptible Wanjincheng and CBC-resistant Kumquat varieties. Subcellular localization and transient expression showed that CsAPX01 and CsAPX02 were expressed in the cytoplasm and nucleus and had hydrogen peroxide (H2O2)-scavenging activity. Virus-induced gene silencing (VIGS) of CsAPX01 and CsAPX02 resulted in strong resistance to CBC and H2O2 bursts without effects on the plant phenotype. The current study focused on investigating and characterizing the citrus APX family. It was found that CsAPX01 and CsAPX02 exacerbated CBC by altering the balance of H2O2. These findings emphasize the importance of APXs in enhancing plant resistance to pathogens.

2.
Elife ; 132024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136681

RESUMEN

Xanthomonas citri subsp. citri (Xcc), the causal agent of citrus canker, elicits canker symptoms in citrus plants because of the transcriptional activator-like (TAL) effector PthA4, which activates the expression of the citrus susceptibility gene CsLOB1. This study reports the regulation of the putative carbohydrate-binding protein gene Cs9g12620 by PthA4-mediated induction of CsLOB1 during Xcc infection. We found that the transcription of Cs9g12620 was induced by infection with Xcc in a PthA4-dependent manner. Even though it specifically bound to a putative TAL effector-binding element in the Cs9g12620 promoter, PthA4 exerted a suppressive effect on the promoter activity. In contrast, CsLOB1 bound to the Cs9g12620 promoter to activate its expression. The silencing of CsLOB1 significantly reduced the level of expression of Cs9g12620, which demonstrated that Cs9g12620 was directly regulated by CsLOB1. Intriguingly, PhtA4 interacted with CsLOB1 and exerted feedback control that suppressed the induction of expression of Cs9g12620 by CsLOB1. Transient overexpression and gene silencing revealed that Cs9g12620 was required for the optimal development of canker symptoms. These results support the hypothesis that the expression of Cs9g12620 is dynamically directed by PthA4 for canker formation through the PthA4-mediated induction of CsLOB1.


Asunto(s)
Proteínas Bacterianas , Citrus , Enfermedades de las Plantas , Xanthomonas , Xanthomonas/genética , Xanthomonas/metabolismo , Enfermedades de las Plantas/microbiología , Citrus/microbiología , Citrus/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Regiones Promotoras Genéticas
3.
Lett Appl Microbiol ; 77(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39147561

RESUMEN

Xanthan gum is a microbial polysaccharide produced by Xanthomonas and widely used in various industries. To produce xanthan gum, the native Xanthomonas citri-386 was used in a cheese-whey-based culture medium. The culture conditions were investigated in batch experiments based on the response surface methodology to increase xanthan production and viscosity. Three independent variables in this study included feeding times of acetate, pyruvate, and citrate. The maximum xanthan gum production and viscosity within 120 h by X. citri-386 using Box-Behnken design were 25.7 g/l and 65 500 cP, respectively, with a 151% and 394% increase as compared to the control sample. Overall, the findings of this study recommend the use of X. citri-386 in the cheese-whey-based medium as an economical medium with optimal amounts of acetate, pyruvate, and citrate for commercial production of xanthan gum on an industrial scale. The adjustment of the pyruvate and acetate concentrations optimized xanthan gum production in the environment.


Asunto(s)
Acetatos , Ácido Cítrico , Medios de Cultivo , Polisacáridos Bacterianos , Ácido Pirúvico , Xanthomonas , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/metabolismo , Xanthomonas/metabolismo , Xanthomonas/crecimiento & desarrollo , Ácido Pirúvico/metabolismo , Ácido Cítrico/metabolismo , Medios de Cultivo/química , Acetatos/metabolismo , Viscosidad
4.
Mol Plant Pathol ; 25(7): e13496, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39011828

RESUMEN

The second messenger cyclic diguanylate monophosphate (c-di-GMP) regulates a wide range of bacterial behaviours through diverse mechanisms and binding receptors. Single-domain PilZ proteins, the most widespread and abundant known c-di-GMP receptors in bacteria, act as trans-acting adaptor proteins that enable c-di-GMP to control signalling pathways with high specificity. This study identifies a single-domain PilZ protein, XAC3402 (renamed N5MapZ), from the phytopathogen Xanthomonas citri subsp. citri (Xcc), which modulates Xcc virulence by directly interacting with the methyltransferase HemK. Through yeast two-hybrid, co-immunoprecipitation and immunofluorescent staining, we demonstrated that N5MapZ and HemK interact directly under both in vitro and in vivo conditions, with the strength of the protein-protein interaction decreasing at high c-di-GMP concentrations. This finding distinguishes N5MapZ from other characterized single-domain PilZ proteins, as it was previously known that c-di-GMP enhances the interaction between those single-domain PilZs and their protein partners. This observation is further supported by the fact that the c-di-GMP binding-defective mutant N5MapZR10A can interact with HemK to inhibit the methylation of the class 1 translation termination release factor PrfA. Additionally, we found that HemK plays an important role in Xcc pathogenesis, as the deletion of hemK leads to extensive phenotypic changes, including reduced virulence in citrus plants, decreased motility, production of extracellular enzymes and stress tolerance. Gene expression analysis has revealed that c-di-GMP and the HemK-mediated pathway regulate the expression of multiple virulence effector proteins, uncovering a novel regulatory mechanism through which c-di-GMP regulates Xcc virulence by mediating PrfA methylation via the single-domain PilZ adaptor protein N5MapZ.


Asunto(s)
Proteínas Bacterianas , GMP Cíclico , Metiltransferasas , Xanthomonas , Xanthomonas/patogenicidad , Xanthomonas/metabolismo , Xanthomonas/genética , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Virulencia , Enfermedades de las Plantas/microbiología , Unión Proteica
5.
Phytopathology ; : PHYTO04240121R, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38829919

RESUMEN

It is essential to have a thorough knowledge of the genetic variation among different strains of Xanthomonas citri pv. citri, which is responsible for causing citrus bacterial canker. This understanding is important for studying disease characteristics, population structure, and evolution and ultimately for developing sustainable methods of control. A total of 48 strains obtained from citrus production areas in Burkina Faso in 2012, 2020, and 2021 were subjected to Polymerase Chain reaction (PCR) tests using specific primers. The aim was to examine the distribution of type 3 effectors and determine the geographical origins of the strains. The examination of the distribution of type 3 non-transcription-activator-like effectors (TALEs) revealed a broader range of strains obtained in 2020 and 2021 than in 2012. However, all the strains possessed a shared set of three genes, specifically, XopE2, XopN, and AvrBs2. Furthermore, all examined effectors were observed in the Bobo-Dioulasso region. Regarding the characterization of TALEs, two profiles containing two to three TALEs were discovered. Profile 1, consisting of two TALEs, was found in 37 X. citri pv. citri strains, whereas Profile 2, comprising three TALEs, was detected in 11 strains. Among the three TALEs (A, B, and C) that were identified, TALEs B and C were present in all the strains. The correlation matrix indicated a positive association between the type 3 effector content of strains and the duration of their isolation. Principal component analysis revealed a limited organization of the strains under investigation. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

6.
Phytopathology ; 114(8): 1802-1809, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38748545

RESUMEN

Citrus canker disease, caused by Xanthomonas citri subsp. citri, poses a significant threat to global citrus production. The control of the disease in the field relies mainly on the use of conventional tools such as copper compounds, which are harmful to the environment and could lead to bacterial resistance. This scenario stresses the need for new and sustainable technologies to control phytopathogens, representing a key challenge in developing studies that translate basic into applied knowledge. During infection, X. citri subsp. citri secretes a transcriptional activator-like effector that enters the nucleus of plant cells, activating the expression of the canker susceptibility gene LATERAL ORGAN BOUNDARIES 1 (LOB1). In this study, we explored the use of antisense oligonucleotides (ASOs) with phosphorothioate modifications to transiently inhibit the gene expression of CsLOB1 in Citrus sinensis. We designed and validated three potential ASO sequences, which led to a significant reduction in disease symptoms compared with the control. The selected ASO3-CsLOB1 significantly decreased the expression level of CsLOB1 when delivered through two distinct delivery methods, and the reduction of the symptoms ranged from approximately 15 to 83%. Notably, plants treated with ASO3 did not exhibit an increase in symptom development over the evaluation period. This study highlights the efficacy of ASO technology, based on short oligonucleotide chemically modified sequences, as a promising tool for controlling phytopathogens without the need for genetic transformation or plant regeneration. Our results demonstrate the potential of ASOs as a biotechnological tool for the management of citrus canker disease.


Asunto(s)
Resistencia a la Enfermedad , Silenciador del Gen , Oligonucleótidos Antisentido , Enfermedades de las Plantas , Xanthomonas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Xanthomonas/fisiología , Xanthomonas/genética , Resistencia a la Enfermedad/genética , Oligonucleótidos Antisentido/genética , Citrus/microbiología , Citrus sinensis/microbiología , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas
7.
J Exp Bot ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820225

RESUMEN

Citrus bacterial canker (CBC) is a disease that poses a major threat to global citrus production and is caused by infection with Xanthomonas citri subsp. citri (Xcc). Wall-associated receptor-like kinase (WAKL) proteins play an important role in shaping plant resistance to various bacterial and fungal pathogens. In a prior report, CsWAKL01 was identified as a candidate Xcc-inducible gene found to be upregulated in CBC-resistant citrus plants. However, the functional role of CsWAKL01 and the mechanisms whereby it may influence resistance to CBC have yet to be clarified. Here, CsWAKL01 was found to localize to the plasma membrane, and the overexpression of the corresponding gene in transgenic sweet oranges resulted in the pronounced enhancement of CBC resistance, whereas its knockdown had the opposite effect. Mechanistically, the ability of CsWAKL01 was linked to its ability to reprogram jasmonic acid, salicylic acid, and abscisic acid signaling activity. CsWRKY53 was further identified as a transcription factor capable of directly binding the CsWAKL01 promoter and inducing its transcriptional upregulation. CsWRKY53 silencing conferred greater CBC susceptibility to infected plants. Overall, these data support a model wherein CsWRKY53 functions as a positive regulator of CsWAKL01 to enhance resistance to CBC via the reprogramming of phytohormone signaling. Together these results offer new insight into the mechanisms whereby WAKLs shape phytopathogen resistance while underscoring the potential value of targeting the CsWRKY53-CsWAKL01 axis when seeking to breed CBC-resistant citrus plant varieties.

8.
J Agric Food Chem ; 72(17): 9611-9620, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38646906

RESUMEN

Citrus canker, a highly contagious bacterial disease caused by Xanthomonas citri subsp. citri (Xcc), poses a substantial threat to citrus crops, leading to serious reductions in fruit yield and economic losses. Most commonly used bactericides against Xcc lead to the rapid development of resistant subpopulations. Therefore, it is imperative to create novel drugs, such as type III secretion system (T3SS) inhibitors, that specifically target bacterial virulence factors rather than bacterial viability. In our study, we designed and synthesized a series of mandelic acid derivatives including 2-mercapto-1,3,4-thiazole. Seven substances were found to reduce the level of transcription of hpa1 without affecting bacterial viability. In vivo bioassays indicated that compound F9 significantly inhibited hypersensitive response and pathogenicity. RT-qPCR assays showed that compound F9 visibly suppressed the expression of Xcc T3SS-related genes as well as citrus canker susceptibility gene CsLOB1. Furthermore, the combination with compound F9 and quorum-quenching bacteria HN-8 can also obviously alleviate canker symptoms.


Asunto(s)
Proteínas Bacterianas , Citrus , Ácidos Mandélicos , Enfermedades de las Plantas , Sistemas de Secreción Tipo III , Xanthomonas , Xanthomonas/efectos de los fármacos , Xanthomonas/patogenicidad , Citrus/microbiología , Citrus/química , Enfermedades de las Plantas/microbiología , Virulencia/efectos de los fármacos , Ácidos Mandélicos/farmacología , Ácidos Mandélicos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo III/genética , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Diseño de Fármacos
9.
Int J Biol Macromol ; 267(Pt 2): 131442, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621573

RESUMEN

Citrus bacterial canker (CBC) is a harmful bacterial disease caused by Xanthomonas citri subsp. citri (Xcc), negatively impacting citrus production worldwide. The basic helix-loop-helix (bHLH) transcription factor family plays crucial roles in plant development and stress responses. This study aimed to identify and annotate bHLH proteins encoded in the Citrus sinensis genome and explore their involvement and functional importance in regulating CBC resistance. A total of 135 putative CsbHLHs TFs were identified and categorized into 16 subfamilies. Their chromosomal locations, collinearity, and phylogenetic relationships were comprehensively analyzed. Upon Xcc strain YN1 infection, certain CsbHLHs were differentially regulated in CBC-resistant and CBC-sensitive citrus varieties. Among these, CsbHLH085 was selected for further functional characterization. CsbHLH085 was upregulated in the CBC-resistant citrus variety, was localized in the nucleus, and had a transcriptional activation activity. CsbHLH085 overexpression in Citrus significantly enhanced CBC resistance, accompanied by increased levels of salicylic acid (SA), jasmonic acid (JA), reactive oxygen species (ROS), and decreased levels of abscisic acid (ABA) and antioxidant enzymes. Conversely, CsbHLH085 virus-induced gene silencing resulted in opposite phenotypic and biochemical responses. CsbHLH085 silencing also affected the expression of phytohormone biosynthesis and signaling genes involved in SA, JA, and ABA signaling. These findings highlight the crucial role of CsbHLH085 in regulating CBC resistance, suggesting its potential as a target for biotechnological-assisted breeding citrus varieties with improved resistance against phytopathogens.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Citrus sinensis , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Xanthomonas , Citrus sinensis/microbiología , Citrus sinensis/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Xanthomonas/patogenicidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Filogenia , Oxilipinas/metabolismo , Genoma de Planta , Ciclopentanos/metabolismo , Ácido Salicílico/metabolismo , Familia de Multigenes
10.
Phytopathology ; 114(7): 1480-1489, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38669587

RESUMEN

Xanthomonas citri is a plant-pathogenic bacterium associated with a diverse range of host plant species. It has undergone substantial reclassification and currently consists of 14 different subspecies or pathovars that are responsible for a wide range of plant diseases. Whole-genome sequencing (WGS) provides a cutting-edge advantage over other diagnostic techniques in epidemiological and evolutionary studies of X. citri because it has a higher discriminatory power and is replicable across laboratories. WGS also allows for the improvement of multilocus sequence typing (MLST) schemes. In this study, we used genome sequences of Xanthomonas isolates from the NCBI RefSeq database to develop a seven-gene MLST scheme that yielded 19 sequence types (STs) that correlated with phylogenetic clades of X. citri subspecies or pathovars. Using this MLST scheme, we examined 2,911 Xanthomonas species assemblies from NCBI GenBank and identified 15 novel STs from 37 isolates that were misclassified in NCBI. In total, we identified 545 X. citri assemblies from GenBank with 95% average nucleotide identity to the X. citri type strain, and all were classified as one of the 34 STs. All MLST classifications correlated with a phylogenetic position inferred from alignments using 92 conserved genes. We observed several instances where strains from different pathovars formed closely related monophyletic clades and shared the same ST, indicating that further investigation of the validity of these pathovars is required. Our MLST scheme described here is a robust tool for rapid classification of X. citri pathovars using WGS and a powerful method for further comprehensive taxonomic revision of X. citri pathovars.


Asunto(s)
Tipificación de Secuencias Multilocus , Filogenia , Enfermedades de las Plantas , Secuenciación Completa del Genoma , Xanthomonas , Xanthomonas/genética , Xanthomonas/clasificación , Xanthomonas/aislamiento & purificación , Tipificación de Secuencias Multilocus/métodos , Enfermedades de las Plantas/microbiología , Genoma Bacteriano/genética
11.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474170

RESUMEN

Citrus bacterial canker (CBC) is a severe bacterial infection caused by Xanthomonas citri subsp. citri (Xcc), which continues to adversely impact citrus production worldwide. Members of the GATA family are important regulators of plant development and regulate plant responses to particular stressors. This report aimed to systematically elucidate the Citrus sinensis genome to identify and annotate genes that encode GATAs and evaluate the functional importance of these CsGATAs as regulators of CBC resistance. In total, 24 CsGATAs were identified and classified into four subfamilies. Furthermore, the phylogenetic relationships, chromosomal locations, collinear relationships, gene structures, and conserved domains for each of these GATA family members were also evaluated. It was observed that Xcc infection induced some CsGATAs, among which CsGATA12 was chosen for further functional validation. CsGATA12 was found to be localized in the nucleus and was differentially upregulated in the CBC-resistant and CBC-sensitive Kumquat and Wanjincheng citrus varieties. When transiently overexpressed, CsGATA12 significantly reduced CBC resistance with a corresponding increase in abscisic acid, jasmonic acid, and antioxidant enzyme levels. These alterations were consistent with lower levels of salicylic acid, ethylene, and reactive oxygen species. Moreover, the bacteria-induced CsGATA12 gene silencing yielded the opposite phenotypic outcomes. This investigation highlights the important role of CsGATA12 in regulating CBC resistance, underscoring its potential utility as a target for breeding citrus varieties with superior phytopathogen resistance.


Asunto(s)
Infecciones Bacterianas , Citrus sinensis , Citrus , Xanthomonas , Citrus sinensis/genética , Citrus/genética , Filogenia , Xanthomonas/fisiología , Fitomejoramiento , Enfermedades de las Plantas/microbiología
12.
Appl Microbiol Biotechnol ; 108(1): 196, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324214

RESUMEN

Citrus canker is an infectious bacterial disease and one of the major threats to the orange juice industry, a multibillion-dollar market that generates hundreds of thousands of jobs worldwide. This disease is caused by the Gram-negative bacterium Xanthomonas citri subsp. citri. In Brazil, the largest producer and exporter of concentrate orange juice, the control of citrus canker is exerted by integrated management practices, in which cupric solutions are intensively used in the orchards to refrain bacterial spreading. Copper ions accumulate and are as heavy metals toxic to the environment. Therefore, the aim of the present work was to evaluate bifunctional fusion proteins (BiFuProts) as novel and bio-/peptide-based alternatives to copper formulations to control citrus canker. BiFuProts are composed of an anchor peptide able to bind to citrus leaves, and an antimicrobial "killer" peptide to protect against bacterial infections of plants. The selected BiFuProt (Mel-CgDEF) was bactericidal against X. citri at 125 µg mL-1, targeting the bacterial cytoplasmic membrane within the first minutes of contact. The results in the greenhouse assays proved that Mel-CgDEF at 250 µg mL-1 provided protection against X. citri infection on the leaves, significantly reducing the number of lesions by area when compared with the controls. Overall, the present work showed that the BiFuProt Mel-CgDEF is a biobased and biodegradable possible alternative for substitute cupric formulations. KEY POINTS: • The bifunctional fusion protein Mel-CgDEF was effective against Xanthomonas citri. • Mel-CgDEF action mechanism was the disruption of the cytoplasmic membrane. • Mel-CgDEF protected citrus leaves against citrus canker disease.


Asunto(s)
Citrus , Xanthomonas , Cobre , Péptidos , Péptidos Antimicrobianos
13.
Int J Biol Macromol ; 263(Pt 1): 130259, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382793

RESUMEN

Citrus canker is a disease of economic importance and there are limited biocontrol agents available to mitigate it in an integrated manner. This study was conducted to combat citrus canker disease using biologically active nanoparticles (Ag, Cu and ZnO and 300, 900, 1200, and 1500 ppm) synthesized from macromolecules extracted from alga, Oedogonium sp. The synthesis of the nanoparticles was confirmed by UV-Vis Spectroscopy, FTIR, SEM, XRD, and DLS Zeta sizer while their efficacy was tested against Xanthomonas citri by measuring zone of inhibition. Results indicated that Ag and Cu nanoparticles at 1200 ppm exhibit the highest activity against Xanthomonas citri, followed by ZnO at 1500 ppm. The minimum inhibitory concentrations (MIC) of Ag, Cu and ZnO NPs were 1, 2 and 10 mg mL-1, respectively while minimum bactericidal concentrations (MBC) were for Ag and Cu 2, 4 mg mL-1 and for ZnO NPs more then 10 mg mL-1, were required to kill the X. citri. Bacterial growth respectively. Macromolecules extracted from algal sources can produce nanoparticles with bactericidal potential, in the order of Ag > Cu > ZnO to mitigate citrus canker disease and ensuring sustainable food production amid the growing human population.


Asunto(s)
Citrus , Xanthomonas , Óxido de Zinc , Humanos , Citrus/microbiología , Xanthomonas/fisiología , Seguridad Alimentaria , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
14.
J Agric Food Chem ; 72(9): 4788-4800, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38377546

RESUMEN

The present study investigated the antibacterial mechanism, control efficiency, and nontarget toxicity of actinomycin X2 (Act-X2) against Xanthomonas citri subsp. citri (Xcc) for the first time. Act-X2 almost completely inhibited the proliferation of Xcc in the growth curve assay at a concentration of 0.25 MIC (minimum inhibitory concentration, MIC = 31.25 µg/mL). This inhibitory effect was achieved by increasing the production of reactive oxygen species (ROS), blocking the formation of biofilms, obstructing the synthesis of intracellular proteins, and decreasing the enzymatic activities of malate dehydrogenase (MDH) and succinate dehydrogenase (SDH) of Xcc. Molecular docking and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis results indicated that Act-X2 steadily bonded to the RNA polymerase, ribosome, malate dehydrogenase, and succinate dehydrogenase to inhibit their activities, thus drastically reducing the expression levels of related genes. Act-X2 showed far more effectiveness than the commercially available pesticide Cu2(OH)3Cl in the prevention and therapy of citrus canker disease. Furthermore, the nontarget toxicity evaluation demonstrated that Act-X2 was not phytotoxic to citrus trees and exhibited minimal toxicity to earthworms in both contact and soil toxic assays. This study suggests that Act-X2 has the potential as an effective and environmentally friendly antibacterial agent.


Asunto(s)
Citrus , Dactinomicina/análogos & derivados , Xanthomonas , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Simulación del Acoplamiento Molecular , Antibacterianos/toxicidad , Antibacterianos/metabolismo , Citrus/metabolismo , Enfermedades de las Plantas/microbiología
15.
Plant J ; 118(2): 534-548, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38230828

RESUMEN

Citrus bacterial canker (CBC) is a serious bacterial disease caused by Xanthomonas citri subsp. citri (Xcc) that adversely impacts the global citrus industry. In a previous study, we demonstrated that overexpression of an Xcc-inducible apetala 2/ethylene response factor encoded by Citrus sinensis, CsAP2-09, enhances CBC resistance. The mechanism responsible for this effect, however, is not known. In the present study, we showed that CsAP2-09 targeted the promoter of the Xcc-inducible WRKY transcription factor coding gene CsWRKY25 directly, activating its transcription. CsWRKY25 was found to localize to the nucleus and to activate transcriptional activity. Plants overexpressing CsWRKY25 were more resistant to CBC and showed higher expression of the respiratory burst oxidase homolog (RBOH) CsRBOH2, in addition to exhibiting increased RBOH activity. Transient overexpression assays in citrus confirmed that CsWRKY25 and CsRBOH2 participated in the generation of reactive oxygen species (ROS) bursts, which were able to restore the ROS degradation caused by CsAP2-09 knockdown. Moreover, CsWRKY25 was found to bind directly to W-box elements within the CsRBOH2 promoter. Notably, CsRBOH2 knockdown had been reported previously to reduce the CBC resistance, while demonstrated in this study, CsRBOH2 transient overexpression can enhance the CBC resistance. Overall, our results outline a pathway through which CsAP2-09-CsWRKY25 transcriptionally reprograms CsRBOH2-mediated ROS homeostasis in a manner conducive to CBC resistance. These data offer new insight into the mechanisms and regulatory pathways through which CsAP2-09 regulates CBC resistance, highlighting its potential utility as a target for the breeding of CBC-resistant citrus varieties.


Asunto(s)
Citrus sinensis , Citrus , Xanthomonas , Citrus/genética , Citrus/microbiología , Especies Reactivas de Oxígeno , Xanthomonas/genética , Fitomejoramiento , Citrus sinensis/genética , Citrus sinensis/microbiología , Homeostasis , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
16.
J Agric Food Chem ; 71(43): 15971-15980, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37831979

RESUMEN

To find potential type III secretion system (T3SS) inhibitors against citrus canker caused by Xanthomonas citri subsp. citri (Xcc), a new series of 5-phenyl-2-furan carboxylic acid derivatives stitched with 2-mercapto-1,3,4-thiadiazole were designed and synthesized. Among the 30 compounds synthesized, 14 compounds significantly inhibited the promoter activity of a harpin gene hpa1. Eight of the 14 compounds did not affect the growth of Xcc, but significantly reduced the hypersensitive response (HR) of tobacco and decreased the pathogenicity of Xcc on citrus plants. Subsequent studies have demonstrated that these inhibitory molecules effectively suppress the T3SS of Xcc and significantly impair the pathogen's ability to subvert citrus immunity, resulting in a reduction in the level of disease progression. As a result, our work has identified a series of potentially attractive agents for the control of citrus canker.


Asunto(s)
Citrus , Xanthomonas , Sistemas de Secreción Tipo III/genética , Virulencia , Enfermedades de las Plantas/prevención & control
17.
Plant Biotechnol J ; 21(10): 2019-2032, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37421233

RESUMEN

Citrus bacterial canker (CBC), caused by Xanthomonas citri subsp. citri (Xcc), causes dramatic losses to the citrus industry worldwide. Transcription activator-like effectors (TALEs), which bind to effector binding elements (EBEs) in host promoters and activate transcription of downstream host genes, contribute significantly to Xcc virulence. The discovery of the biochemical context for the binding of TALEs to matching EBE motifs, an interaction commonly referred to as the TALE code, enabled the in silico prediction of EBEs for each TALE protein. Using the TALE code, we engineered a synthetic resistance (R) gene, called the Xcc-TALE-trap, in which 14 tandemly arranged EBEs, each capable of autonomously recognizing a particular Xcc TALE, drive the expression of Xanthomonas avrGf2, which encodes a bacterial effector that induces plant cell death. Analysis of a corresponding transgenic Duncan grapefruit showed that transcription of the cell death-inducing executor gene, avrGf2, was strictly TALE-dependent and could be activated by several different Xcc TALE proteins. Evaluation of Xcc strains from different continents showed that the Xcc-TALE-trap mediates resistance to this global panel of Xcc isolates. We also studied in planta-evolved TALEs (eTALEs) with novel DNA-binding domains and found that these eTALEs also activate the Xcc-TALE-trap, suggesting that the Xcc-TALE-trap is likely to confer durable resistance to Xcc. Finally, we show that the Xcc-TALE-trap confers resistance not only in laboratory infection assays but also in more agriculturally relevant field studies. In conclusion, transgenic plants containing the Xcc-TALE-trap offer a promising sustainable approach to control CBC.


Asunto(s)
Citrus , Xanthomonas , Efectores Tipo Activadores de la Transcripción/genética , Efectores Tipo Activadores de la Transcripción/metabolismo , Citrus/genética , Citrus/microbiología , Xanthomonas/genética , Regiones Promotoras Genéticas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
18.
Microorganisms ; 11(6)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37375024

RESUMEN

Biological control of plant diseases has gained attraction for controlling various bacterial diseases at a field trial stage. An isolated endophytic bacterium, Bacillus velezensis 25 (Bv-25), from Citrus species had strong antagonistic activity against Xanthomonas citri subsp. citri (Xcc), which causes citrus canker disease. When Bv-25 was incubated in Landy broth or yeast nutrient broth (YNB), the ethyl acetate extract of Landy broth exhibited higher levels of antagonistic activity against Xcc compared to that of YNB. Therefore, the antimicrobial compounds in the two ethyl acetate extracts were detected by high performance liquid chromatography-mass spectrometry. This comparison revealed an increase in production of several antimicrobial compounds, including difficidin, surfactin, fengycin, and Iturin-A or bacillomycin-D by incubation in Landy broth. RNA sequencing for the Bv-25 grown in Landy broth were performed, and the differential expressions were detected for the genes encoding the enzymes for the synthesis of antimicrobial compounds, such as bacilysin, plipastatin or fengycin, surfactin, and mycosubtilin. Combination of metabolomics analysis and RNA sequencing strongly suggests that several antagonistic compounds, especially bacilysin produced by B. velezensis, exhibit an antagonistic effect against Xcc.

19.
Photochem Photobiol Sci ; 22(8): 1901-1918, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37209300

RESUMEN

Plant-pathogen interaction is influenced by multiple environmental factors, including temperature and light. Recent works have shown that light modulates not only the defense response of plants but also the pathogens virulence. Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker, an important plant disease worldwide. The Xcc genome presents four genes encoding putative photoreceptors: one bacteriophytochrome and three blue light photoreceptors, one LOV and two BLUFs (bluf1: XAC2120 and bluf2: XAC3278). The presence of two BLUFs proteins is an outstanding feature of Xcc. In this work we show that the bluf2 gene is functional. The mutant strain, XccΔbluf2, was constructed demonstrating that BLUF2 regulates swimming-type motility, adhesion to leaves, exopolysaccharide production and biofilm formation, features involved in the Xcc virulence processes. An important aspect during the plant-pathogen interaction is the oxidative response of the host and the consequent reaction of the pathogen. We observed that ROS detoxification is regulated by Xcc bluf2 gene. The phenotypes of disease in orange plants produced by WT and XccΔbluf2 strains were evaluated, observing different phenotypes. Altogether, these results show that BLUF2 negatively regulates virulence during citrus canker. This work constitutes the first report on BLUF-like receptors in plant pathogenic bacteria.


Asunto(s)
Citrus , Xanthomonas , Xanthomonas/genética , Xanthomonas/metabolismo , Citrus/metabolismo , Citrus/microbiología , Virulencia , Luz , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo
20.
Phytopathology ; 113(5): 812-823, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37059968

RESUMEN

Bacterial blight resistance gene B5 has received little attention since it was first described in 1950. A near-isogenic line (NIL) of Gossypium hirsutum cotton, AcB5, was generated in an otherwise bacterial-blight-susceptible 'Acala 44' background. The introgressed locus B5 in AcB5 conferred strong and broad-spectrum resistance to bacterial blight. Segregation patterns of test crosses under Oklahoma field conditions indicated that AcB5 is likely homozygous for resistance at two loci with partial dominance gene action. In controlled-environment conditions, two of the four copies of B5 were required for effective resistance. Contrary to expectations of gene-for-gene theory, AcB5 conferred high resistance toward isogenic strains of Xanthomonas citri subsp. malvacearum carrying cloned avirulence genes avrB4, avrb7, avrBIn, avrB101, and avrB102, respectively, and weaker resistance toward the strain carrying cloned avrb6. The hypothesis that each B gene, in the absence of a polygenic complex, triggers sesquiterpenoid phytoalexin production was tested by measurement of cadalene and lacinilene phytoalexins during resistant responses in five NILs carrying different B genes, four other lines carrying multiple resistance genes, as well as susceptible Ac44E. Phytoalexin production was an obvious, but variable, response in all nine resistant lines. AcB5 accumulated an order of magnitude more of all four phytoalexins than any of the other resistant NILs. Its total levels were comparable to those detected in OK1.2, a highly resistant line that possesses several B genes in a polygenic background.


Asunto(s)
Sesquiterpenos , Xanthomonas , Gossypium/genética , Gossypium/microbiología , Fitoalexinas , Enfermedades de las Plantas/microbiología , Xanthomonas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA