Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; 28(29): e202200246, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35286727

RESUMEN

Quantum chemical calculations are reported for the thermal dimerizations of 1,3-cyclohexadiene at 1 atm and high pressures up to the GPa range. Computed activation enthalpies of plausible dimerization pathways at 1 atm agree well with the experiment activation energies and the values from previous calculations. High-pressure reaction profiles, computed by the recently developed extreme pressure-polarizable continuum model (XP-PCM), show that the reduction of reaction barrier is more profound in concerted reactions than in stepwise reactions, which is rationalized on the basis of the volume profiles of different mechanisms. A clear shift of the transition state towards the reactant under pressure is revealed for the [6+4]-ene reaction by the calculations. The computed activation volumes by XP-PCM agree excellently with the experimental values, confirming the existence of competing mechanisms in the thermal dimerization of 1,3-cyclohexadiene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA