Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
New Phytol ; 241(5): 1998-2008, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38135655

RESUMEN

Peat moss (Sphagnum spp.) develops mutualistic interactions with cyanobacteria by providing carbohydrates and S compounds in exchange for N-rich compounds, potentially facilitating N inputs into peatlands. Here, we evaluate how colonization of Sphagnum angustifolium hyaline cells by Nostoc muscorum modifies S abundance and speciation at the scales of individual cells and across whole leaves. For the first time, S K-edge X-ray Absorption Spectroscopy was used to identify bulk and micron-scale S speciation across isolated cyanobacteria colonies, and in colonized and uncolonized leaves. Uncolonized leaves contained primarily reduced organic S and oxidized sulfonate- and sulfate-containing compounds. Increasing Nostoc colonization resulted in an enrichment of S and changes in speciation, with increases in sulfate relative to reduced S and sulfonate. At the scale of individual hyaline cells, colonized cells exhibited localized enrichment of reduced S surrounded by diffuse sulfonate, similar to observations of cyanobacteria colonies cultured in the absence of leaves. We infer that colonization stimulates plant S uptake and the production of sulfate-containing metabolites that are concentrated in stem tissues. Sulfate compounds that are produced in response to colonization become depleted in colonized cells where they may be converted into reduced S metabolites by cyanobacteria.


Asunto(s)
Nostoc , Sphagnopsida , Sphagnopsida/fisiología , Suelo , Azufre , Sulfatos
2.
Sci Total Environ ; 703: 135041, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31767332

RESUMEN

Cardamine violifolia (family Brassicaceae) is the first discovered selenium hyperaccumulator from the genus Cardamine with unique properties in terms of selenium accumulation, i.e., high abundance of selenolanthionine. In our study, a fully comprehensive experiment was conducted with the comparison of a non-hyperaccumulator Cardamine species, Cardamine pratensis, covering growth characteristics, chlorophyll fluorescence, spatial selenium/sulfur distribution patterns through elemental analyses (synchrotron-based X-Ray Fluorescence and ICP-OES) and speciation data through selenium K-edge micro X-ray absorption near-edge structure analysis (µXANES) and strong cation exchange (SCX)-ICP-MS. The results revealed remarkable differences in contrast to other selenium hyperaccumulators as neither Cardamine species showed evidence of growth stimulation by selenium. Also, selenite uptake was not inhibited by phosphate for either of the Cardamine species. Sulfate inhibited selenate uptake, but the two Cardamine species did not show any difference in this respect. However, µXRF derived speciation maps and selenium/sulfur uptake characteristics provided results that are similar to other formerly reported hyperaccumulator and non-hyperaccumulator Brassicaceae species. µXANES showed organic selenium, "C-Se-C", in seedlings of both species and also in mature C. violifolia plants. In contrast, selenate-supplied mature C. pratensis contained approximately half "C-Se-C" and half selenate. SCX-ICP-MS data showed evidence of the lack of selenocystine in any of the Cardamine plant extracts. Thus, C. violifolia shows clear selenium-related physiological and biochemical differences compared to C. pratensis and other selenium hyperaccumulators.


Asunto(s)
Cardamine/metabolismo , Selenio/metabolismo , Contaminantes del Suelo/metabolismo , Brassicaceae
3.
Plants (Basel) ; 8(8)2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31426292

RESUMEN

More than a billion people worldwide may be selenium (Se) deficient, and supplementation with Se-rich Brazil nuts may be a good strategy to prevent deficiency. Since different forms of Se have different nutritional value, and Se is toxic at elevated levels, careful seed characterization is important. Variation in Se concentration and correlations of this element with other nutrients were found in two batches of commercially available nuts. Selenium tissue localization and speciation were further determined. Mean Se levels were between 28 and 49 mg kg-1, with up to 8-fold seed-to-seed variation (n = 13) within batches. Brazil nut Se was mainly in organic form. While present throughout the seed, Se was most concentrated in a ring 1 to 2 mm below the surface. While healthy, Brazil nuts should be consumed in moderation. Consumption of one seed (5 g) from a high-Se area meets its recommended daily allowance; the recommended serving size of 30 g may exceed the allowable daily intake (400 µg) or even its toxicity threshold (1200 µg). Based on these findings, the recommended serving size may be re-evaluated, consumers should be warned not to exceed the serving size and the seed may be sold as part of mixed nuts, to avoid excess Se intake.

4.
Front Plant Sci ; 9: 1583, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30429866

RESUMEN

Buckwheat is an important crop species in areas of selenium (Se) deficiency. To obtain better insight into their Se metabolic properties, common buckwheat (Fagopyrum esculentum) and tartary buckwheat (F. tataricum) were supplied with different concentrations of Se, supplied as selenate, selenite, or Astragalus bisulcatus plant extract (methyl-selenocysteine). Se was supplied at different developmental stages, with different durations, and in the presence or absence of potentially competing ions, sulfate, and phosphate. The plants were analyzed for growth, Se uptake, translocation, accumulation, as well as for Se localization and chemical speciation in the seed. Plants of both buckwheat species were supplied with 20 µM of either of the three forms of Se twice over their growth period. Both species accumulated 15-40 mg Se kg-1 DW in seeds, leaves and stems, from all three selenocompounds. X-ray microprobe analysis showed that the Se in seeds was localized in the embryo, in organic C-Se-C form(s) resembling selenomethionine, methyl-selenocysteine, and γ-glutamyl-methylselenocysteine standards. In short-term (2 and 24 h) Se uptake studies, both buckwheat species showed higher Se uptake rate and shoot Se accumulation when supplied with plant extract (methyl-selenocysteine), compared to selenite or selenate. In long-term (7 days) uptake studies, both species were resistant to selenite up to 50 µM. Tartary buckwheat was also resistant to selenate up to 75 µM Se, but >30 µM selenate inhibited common buckwheat growth. Selenium accumulation was similar in both species. When selenite was supplied, Se levels were 10-20-fold higher in root (up to 900 mg Se kg-1 DW) than shoot, but 4-fold higher in shoot (up to 1,200 mg Se kg-1 DW) than root for selenate-supplied plants. Additionally, sulfate and phosphate supply affected Se uptake, and conversely selenate enhanced S and P accumulation in both species. These findings have relevance for crop Se biofortification applications.

5.
J Synchrotron Radiat ; 25(Pt 5): 1514-1516, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30179192

RESUMEN

For many X-ray microprobe experiments it is desirable to be able to vary the beam size: using large beams for survey scans and a small beam for the final measurements. Beryllium refractive lenses were found to be a simple and controllable method for enlarging the focus in a Kirkpatrick-Baez-based microprobe. They can provide variable spot size, can be quickly inserted or removed and do not move the beam center on the sample.

6.
New Phytol ; 205(2): 583-95, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25262627

RESUMEN

Past studies have identified herbivory as a likely selection pressure for the evolution of hyperaccumulation, but few have tested the origin(s) of hyperaccumulation in a phylogenetic context. We focused on the evolutionary history of selenium (Se) hyperaccumulation in Stanleya (Brassicaceae). Multiple accessions were collected for all Stanleya taxa and two outgroup species. We sequenced four nuclear gene regions and performed a phylogenetic analysis. Ancestral reconstruction was used to predict the states for Se-related traits in a parsimony framework. Furthermore, we tested the taxa for Se localization and speciation using X-ray microprobe analyses. True hyperaccumulation was found in three taxa within the S. pinnata/bipinnata clade. Tolerance to hyperaccumulator Se concentrations was found in several taxa across the phylogeny, including the hyperaccumulators. X-ray analysis revealed two distinct patterns of leaf Se localization across the genus: marginal and vascular. All taxa accumulated predominantly (65-96%) organic Se with the C-Se-C configuration. These results give insight into the evolution of Se hyperaccumulation in Stanleya and suggest that Se tolerance and the capacity to produce organic Se are likely prerequisites for Se hyperaccumulation in Stanleya.


Asunto(s)
Evolución Biológica , Brassicaceae/metabolismo , Selenio/metabolismo , Brassicaceae/genética , Brassicaceae/fisiología , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología
7.
Eur J Dent ; 1(1): 40-4, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19212496

RESUMEN

OBJECTIVES: Several procedures have been advocated as regenerative procedures in periodontology, but one of the most widely used techniques up to now is guided tissue regeneration (GTR). Likewise, different assessment methods based on clinical, radiographic or histological measurements have been proposed for the evaluation of these regenerative procedures. However, none of the methods used for human material incorporates quantitative X-ray microanalysis to assess the degree of mineralization of the regenerated periodontal hard tissues. The objective of this report was to evaluate, using quantitative X-ray microprobe analysis, the newly-formed hard tissue in a periodontal infrabony defect. METHODS: Electron microprobe analysis was used to study the nature of the newly-formed hard tissue 3 years after treatment with guided tissue regeneration in a patient with localized aggressive periodontitis. RESULTS: Our quantitative analyses, using the peak-to-background method, showed calcium/phosphorus mass ratio of 1.50 +/- 0.38 in the newly-formed hard tissue around the affected tooth root. CONCLUSION: Quantitative X-ray microprobe analysis is a useful tool that may provide an accurate assessment of the degree of mineralization in an extremely small tissue sample.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA