Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.657
Filtrar
1.
Biomaterials ; 313: 122814, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39243672

RESUMEN

Radiotherapy as a mainstay of in-depth cervical cancer (CC) treatment suffers from its radioresistance. Radiodynamic therapy (RDT) effectively reverses radio-resistance by generating reactive oxygen species (ROS) with deep tissue penetration. However, the photosensitizers stimulated by X-ray have high toxicity and energy attenuation. Therefore, X-ray responsive diselenide-bridged mesoporous silica nanoparticles (DMSNs) are designed, loading X-ray-activated photosensitizer acridine orange (AO) for spot blasting RDT like Trojan-horse against radio-resistance cervical cancer (R-CC). DMSNs can encapsulate a large amount of AO, in the tumor microenvironment (TME), which has a high concentration of hydrogen peroxide, X-ray radiation triggers the cleavage of diselenide bonds, leading to the degradation of DMSNs and the consequent release of AO directly at the tumor site. On the one hand, it solves the problems of rapid drug clearance, adverse distribution, and side effects caused by simple AO treatment. On the other hand, it fully utilizes the advantages of highly penetrating X-ray responsive RDT to enhance radiotherapy sensitivity. This approach results in ROS-induced mitochondria damage, inhibition of DNA damage repair, cell cycle arrest and promotion of cancer cell apoptosis in R-CC. The X-ray responsive DMSNs@AO hold considerable potential in overcoming obstacles for advanced RDT in the treatment of R-CC.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Humanos , Animales , Rayos X , Nanopartículas/química , Femenino , Dióxido de Silicio/química , Ratones , Neoplasias del Cuello Uterino/terapia , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Especies Reactivas de Oxígeno/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Tolerancia a Radiación/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Ratones Desnudos , Células HeLa , Ratones Endogámicos BALB C , Apoptosis/efectos de los fármacos , Línea Celular Tumoral
2.
Artículo en Inglés | MEDLINE | ID: mdl-39011510

RESUMEN

Objectives: Blister pack (BP) ingestion poses serious risks, such as gastrointestinal perforation, and accurate localization by computed tomography (CT) is a common practice. However, while it has been reported in vitro that CT visibility varies with the material type of BPs, there have been no reports on this variability in clinical settings. In this study, we investigated the CT detection rates of different BPs in clinical settings. Methods: This single-center retrospective study from 2010 to 2022 included patients who underwent endoscopic foreign body removal for BP ingestion. The patients were categorized into two groups for BP components, the polypropylene (PP) and the polyvinyl chloride (PVC)/polyvinylidene chloride (PVDC) groups. The primary outcome was the comparison of CT detection rates between the groups. We also evaluated whether the BPs contained tablets and analyzed their locations. Results: This study included 61 patients (15 in the PP group and 46 in the PVC/PVDC group). Detection rates were 97.8% for the PVC/PVDC group compared to 53.3% for the PP group, a significant difference (p < 0.01). No cases of BPs composed solely of PP were detected by CT. Blister packs were most commonly found in the upper thoracic esophagus. Conclusions: Even in a clinical setting, the detection rates of PVC and PVDC were higher than that of PP alone. Identifying PP without tablets has proven challenging in clinical. Considering the risk of perforation, these findings suggest that esophagogastroduodenoscopy may be necessary, even if CT detection is negative.

3.
Front Cardiovasc Med ; 11: 1377299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280034

RESUMEN

Subclinical cardiovascular disease (Sub-CVD) is an early stage of cardiovascular disease and is often asymptomatic. Risk factors, including hypertension, diabetes, obesity, and lifestyle, significantly affect Sub-CVD. Progress in imaging technology has facilitated the timely identification of disease phenotypes and risk categorization. The critical function of dual-energy x-ray absorptiometry (DXA) in predicting Sub-CVD was the subject of this research. Initially used to evaluate bone mineral density, DXA has now evolved into an indispensable tool for assessing body composition, which is a pivotal determinant in estimating cardiovascular risk. DXA offers precise measurements of body fat, lean muscle mass, bone density, and abdominal aortic calcification, rendering it an essential tool for Sub-CVD evaluation. This study examined the efficacy of DXA in integrating various risk factors into a comprehensive assessment and how the application of machine learning could enhance the early discovery and control of cardiovascular risks. DXA exhibits distinct advantages and constraints compared to alternative imaging modalities such as ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography. This review advocates DXA incorporation into cardiovascular health assessments, emphasizing its crucial role in the early identification and management of Sub-CVD.

4.
Strahlenther Onkol ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283341

RESUMEN

OBJECTIVE: Radiation therapy is applied in the treatment of head and neck cancer patients. However, oral-health-related side effects like hyposalivation and a higher prevalence of caries have been shown. This study aims to assess the influence of different radiotherapy doses on the mechanical properties, roughness, superficial microstructure, and crystallinity of the enamel and dentin of human premolar teeth. METHODS: Specimens (n = 25) were categorized into five groups based on the radiation dose received (0, 10, 30, 50, and 70 Gy). The enamel and dentin of these specimens were subjected to a microhardness tester, profilometer, atomic force microscopy (AFM), scanning electron microscopy (SEM), and X­ray diffraction (XRD) before and after different irradiation doses and compared to hydroxylapatite in each group. The data were analyzed using repeated-measures analysis of variance (ANOVA). RESULTS: Therapeutic radiation doses of 30, 50, and 70 Gy led to a decrease in the microhardness and an increase in the average roughness of the enamel, and rougher surfaces were observed in the mixed three-dimensional images. Moreover, in the dentin, a similar outcome could be observed for more than 10 Gy. The main crystalline phase structure remained hydroxylapatite, but the crystallinity decreased and the crystalline size increased above 10 Gy. The superficial micromorphology revealed granulation, fissures, and cracks in a dose-dependent manner. Radiation below 70 Gy had little effect on the hydroxylapatite concentration during the whole experiment. CONCLUSION: Above a radiation dose of 30 Gy, the micromorphology of the tooth enamel changed. This occurred for dentin above 10 Gy, which indicates that dentin is more sensitive to radiotherapy than enamel. The radiation dose had an effect on the micromorphology of the hard tissues of the teeth. These results illustrate the possible mechanism of radiation-related caries and have guiding significance for clinical radiotherapy.

5.
ACS Nano ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283814

RESUMEN

Interfaces can actively control the nucleation kinetics, orientations, and polymorphs of calcium carbonate (CaCO3). Prior studies have revealed that CaCO3 formation can be affected by the interplay between chemical functional moieties on solid-liquid or air-liquid interfaces as well as CaCO3's precursors and facets. Yet little is known about the roles of a liquid-liquid interface, specifically an oil-liquid interface, in directing CaCO3 mineralization which are common in natural and engineered systems. Here, by using in situ X-ray scattering techniques to locate a meniscus formed between water and a representative oil, isooctane, we successfully monitored CaCO3 formation at the pliable isooctane-water interface and systematically investigated the pivotal roles of the interface in the formation of CaCO3 (i.e., particle size, its spatial distribution with respect to the interface, and its mineral phase). Different from bulk solution, ∼5 nm CaCO3 nanoparticles form at the isooctane-water interface. They stably exist for a long time (36 h), which can result from interface-stabilized dehydrated prenucleation clusters of CaCO3. There is a clear tendency for enhanced amounts and faster crystallization of CaCO3 at locations closer to isooctane, which is attributed to a higher pH and an easier dehydration environment created by the interface and oil. Our study provides insights into CaCO3 nucleation at an oil-water interface, which can deepen our understanding of pliable interfaces interacting with CaCO3 and benefit mineral scaling control during energy-related subsurface operation.

6.
J Physiol ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283968

RESUMEN

Precise regulation of sarcomeric contraction is essential for normal cardiac function. The heart must generate sufficient force to pump blood throughout the body, but either inadequate or excessive force can lead to dysregulation and disease. Myosin regulatory light chain (RLC) is a thick-filament protein that binds to the neck of the myosin heavy chain. Post-translational phosphorylation of RLC (RLC-P) by myosin light chain kinase is known to influence acto-myosin interactions, thereby increasing force production and Ca2+-sensitivity of contraction. Here, we investigated the role of RLC-P on cardiac structure and function as sarcomere length and [Ca2+] were altered. We found that at low, non-activating levels of Ca2+, RLC-P contributed to myosin head disorder, though there were no effects on isometric stress production and viscoelastic stiffness. With increases in sarcomere length and Ca2+-activation, the structural changes due to RLC-P become greater, which translates into greater force production, greater viscoelastic stiffness, slowed myosin detachment rates and altered nucleotide handling. Altogether, these data suggest that RLC-P may alter thick-filament structure by releasing ordered, off-state myosin. These more disordered myosin heads are available to bind actin, which could result in greater force production as Ca2+ levels increase. However, prolonged cross-bridge attachment duration due to slower ADP release could delay relaxation long enough to enable cross-bridge rebinding. Together, this work further elucidates the effects of RLC-P in regulating muscle function, thereby promoting a better understanding of thick-filament regulatory contributions to cardiac function in health and disease. KEY POINTS: Myosin regulatory light chain (RLC) is a thick-filament protein in the cardiac sarcomere that can be phosphorylated (RLC-P), and changes in RLC-P are associated with cardiac dysfunction and disease. This study assesses how RLC-P alters cardiac muscle structure and function at different sarcomere lengths and calcium concentrations. At low, non-activating levels of Ca2+, RLC-P contributed to myofilament disorder, though there were no effects on isometric stress production and viscoelastic stiffness. With increases in sarcomere length and Ca2+-activation, the structural changes due to RLC-P become greater, which translates into greater force production, greater viscoelastic stiffness, slower myosin detachment rate and altered cross-bridge nucleotide handling rates. This work elucidates the role of RLC-P in regulating muscle function and facilitates understanding of thick-filament regulatory protein contributions to cardiac function in health and disease.

7.
Proc Natl Acad Sci U S A ; 121(39): e2403662121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39284048

RESUMEN

Despite its ubiquitous nature, the atomic structure of water in its liquid state is still controversially debated. We use a combination of X-ray Raman scattering spectroscopy in conjunction with ab initio and path integral molecular dynamics simulations to study the local atomic and electronic structure of water under high pressure conditions. Systematically increasing fingerprints of non-hydrogen-bonded H[Formula: see text]O molecules in the first hydration shell are identified in the experimental and computational oxygen K-edge excitation spectra. This provides evidence for a compaction mechanism in terms of a continuous collapse of the second hydration shell with increasing pressure via generation of interstitial water within locally tetrahedral hydrogen-bonding environments.

8.
Eur Radiol ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285027

RESUMEN

OBJECTIVES: There is still a debate regarding the prognostic implication of lymphovascular invasion (LVI) in stage I lung adenocarcinoma. Ground-glass opacity (GGO) on CT is known to correlate with a less invasive or lepidic component in adenocarcinoma, which may influence the strength of prognostic factors. This study aimed to explore the prognostic value of LVI in stage I lung adenocarcinoma based on the presence of GGO. MATERIALS AND METHODS: Stage I lung adenocarcinoma patients receiving lobectomy between 2010 and 2019 were retrospectively categorized as GGO-positive or GGO-negative (solid adenocarcinoma) on CT. Multivariable Cox regression analyses were performed for disease-free survival (DFS) and overall survival (OS) to evaluate the prognostic significance of pathologic LVI based on the presence of GGO. RESULTS: Of 924 patients included (mean age, 62.5 ± 9.2 years; 505 women), 525 (56.8%) exhibited GGO-positive adenocarcinoma and 116 (12.6%) were diagnosed with LVI. LVI was significantly more frequent in solid than GGO-positive adenocarcinoma (20.1% vs. 6.9%, p < 0.001). Multivariable analysis identified LVI and visceral pleural invasion (VPI) as significant prognostic factors for shorter DFS among solid adenocarcinoma patients (LVI, hazard ratio (HR): 1.89, p = 0.004; VPI, HR: 1.65, p = 0.003) but not GGO-positive patients (p = 0.76 and p = 0.87). In contrast, LVI was not a significant prognostic factor for OS in either group (p > 0.05). CONCLUSION: In stage I lung adenocarcinoma, pathologic LVI was associated with DFS only in patients with solid lung adenocarcinoma. CLINICAL RELEVANCE STATEMENT: Lymphovascular invasion (LVI) significantly affects disease-free survival in solid-stage I lung adenocarcinoma patients, but not those with ground-glass opacity (GGO) adenocarcinoma. Risk stratification considering both GGO on CT and LVI may identify patients benefiting from increased surveillance. KEY POINTS: The presence of ground-glass opacity portends different prognoses for lung adenocarcinoma. In stage I lung adenocarcinoma, lymphovascular invasion (LVI) was significantly more frequent in solid adenocarcinomas than in ground-glass opacity (GGO)-positive adenocarcinomas. LVI was not associated with overall survival in patients with either solid adenocarcinomas or GGO adenocarcinomas.

9.
Sci Rep ; 14(1): 21629, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285202

RESUMEN

Arsenic contamination in aqueous media is a serious environmental problem, especially in developing countries. In this research, the Box-Behnken response surface methodology was used to optimize the most relevant variables affecting arsenic adsorption on the ZnO-halloysite surface, including temperature, adsorbent dosage, pH, contact time, and As (III) initial concentration. The regression analysis indicated that the experimental data were appropriately fitted to a quadratic model with the adjusted R-squared value (R2) of 0.982 for As(III) adsorption capacity and a linear model with R2 of 0.931 for As(III) removal. The p-values for both adsorption capacity and removal efficiency were below 0.05, with F-values of 116.91 and 115.58, respectively, supporting the model's validity. The optimum conditions for maximum removal of As(III) were determined through numerical and graphical optimization using the desirability function. It was found that the optimum conditions for adsorption were pH = 7.99, contact time of 3.99 h, As(III) initial concentration of 49.96 mg/L, and adsorbent dosage of 0.135 g/40 ml. The accuracy of the optimization procedure was confirmed by a confirmatory experiment, which showed a maximum arsenic removal of 91.31% and an adsorption capacity of 12.63 mg/g under optimized conditions. Moreover, XPS analysis was performed at different pH levels to investigate the As (III) adsorption mechanism. The results demonstrated that As(III) adsorption occurs at acidic and neutral pH levels. On the other hand, when pH is increased to 8, As (III) oxidizes to As (V), and then adsorption occurs.

10.
ACS Nano ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285511

RESUMEN

Block copolymers are recognized as a valuable platform for creating nanostructured materials. Morphologies formed by block copolymer self-assembly can be transferred into a wide range of inorganic materials, enabling applications including energy storage and metamaterials. However, imaging of the underlying, often complex, nanostructures in large volumes has remained a challenge, limiting progress in materials development. Taking advantage of recent advances in X-ray nanotomography, we noninvasively imaged exceptionally large volumes of nanostructured hybrid materials at high resolution, revealing a single-diamond morphology in a triblock terpolymer-gold composite network. This morphology, which is ubiquitous in nature, has so far remained elusive in block copolymer-derived materials, despite its potential to create materials with large photonic bandgaps. The discovery was made possible by the precise analysis of distortions in a large volume of the self-assembled diamond network, which are difficult to unambiguously assess using traditional characterization tools. We anticipate that high-resolution X-ray nanotomography, which allows imaging of much larger sample volumes than electron-based tomography, will become a powerful tool for the quantitative analysis of complex nanostructures and that structures such as the triblock terpolymer-directed single diamond will enable the generation of advanced multicomponent composites with hitherto unknown property profiles.

11.
JGH Open ; 8(9): e70027, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39295850

RESUMEN

Background and Aim: Full-thickness biopsies of the intestinal wall may be used to study and assess damage to the neurons of the enteric nervous system (ENS), that is, enteric neuropathy. The ENS is difficult to examine due to its localization deep in the intestinal wall and its organization with several connections in diverging directions. Histological sections used in clinical practice only visualize the sample in a two-dimensional way. X-ray phase-contrast micro-computed tomography (PC-µCT) has shown potential to assess the cross-sectional thickness and volume of the ENS in three dimensions (3D). The aim of this study was to explore the potential of PC-µCT to evaluate its use to determine the size of the ENS. Methods: Full-thickness biopsies of ileum obtained during surgery from five controls and six patients clinically diagnosed with enteric neuropathy and dysmotility were included. Punch biopsies of 1 mm in diameter and 1 cm in length, from an area containing myenteric plexus, were extracted from paraffin blocks, and scanned with synchrotron-based PC-µCT without any staining. Results: The microscopic volumetric structure of the neural tissue (consisting of both ganglia and fascicles) could be determined in all samples. The ratio of neural tissue volume/total tissue volume was higher in controls than in patients with enteric neuropathy (P = 0.013). The patient with the longest disease duration had the lowest ratio. Conclusion: The assessment of neural tissue can be performed in an objective, standardized way, to ensure reproducibility and comparison under physiological and pathological conditions. Further evaluation is needed to examine the role of this method in the diagnosis of enteric neuropathy.

12.
Eur Radiol Exp ; 8(1): 106, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298011

RESUMEN

BACKGROUND: Patellar instability is a well-known pathology in which kinematics can be investigated using metrics such as tibial tuberosity tracheal groove (TTTG), the bisect offset (BO), and the lateral patellar tilt (LPT). We used dynamic computed tomography (CT) to investigate the patellar motion of healthy subjects in weight-bearing conditions to provide normative values for TTTG, BO, and LPT, as well as to define whether BO and LPT are affected by the morphology of the trochlear groove. METHODS: Dynamic scanning was used to acquire images during weight-bearing in 21 adult healthy volunteers. TTTG, BO, and LPT metrics were computed between 0° and 30° of knee flexion. Sulcus angle, sulcus depth, and lateral trochlear inclination were calculated and used with the TTTG for simple linear regression models. RESULTS: All metrics gradually decreased during eccentric movement (TTTG, -6.9 mm; BO, -12.6%; LPT, -4.3°). No significant differences were observed between eccentric and concentric phases at any flexion angle for all metrics. Linear regression between kinematic metrics towards full extension showed a moderate fit between BO and TTTG (R2 0.60, ß 1.75) and BO and LPT (R2 0.59, ß 1.49), and a low fit between TTTG and LPT (R2 0.38, ß 0.53). A high impact of the TTTG distance over BO was shown in male participants (R2 0.71, ß 1.89) and patella alta individuals (R2 0.55, ß 1.91). CONCLUSION: We provided preliminary normative values of three common metrics during weight-bearing dynamic CT and showed the substantial impact of lateralisation of the patella tendon over patella displacement. RELEVANCE STATEMENT: These normative values can be used by clinicians when evaluating knee patients using TTTG, BO, and LPT metrics. The lateralisation of the patellar tendon in subjects with patella alta or in males significantly impacts the lateral displacement of the patella. KEY POINTS: Trochlear groove morphology had no substantial impact on motion prediction. The lateralisation of the patellar tendon seems a strong predictor of lateral displacement of the patella in male participants. Participants with patella alta displayed a strong fit between the patellar lateral displacement and tilt. TTTG, BO, and LPT decreased during concentric movement. Concentric and eccentric phases did not show differences for all metrics.


Asunto(s)
Voluntarios Sanos , Rótula , Tomografía Computarizada por Rayos X , Soporte de Peso , Humanos , Masculino , Femenino , Tomografía Computarizada por Rayos X/métodos , Adulto , Rótula/diagnóstico por imagen , Rótula/anatomía & histología , Valores de Referencia , Fenómenos Biomecánicos , Adulto Joven , Rango del Movimiento Articular/fisiología , Movimiento/fisiología
13.
Eur Radiol Exp ; 8(1): 105, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298080

RESUMEN

BACKGROUND: Regular disease monitoring with low-dose high-resolution (LD-HR) computed tomography (CT) scans is necessary for the clinical management of people with cystic fibrosis (pwCF). The aim of this study was to compare the image quality and radiation dose of LD-HR protocols between photon-counting CT (PCCT) and energy-integrating detector system CT (EID-CT) in pwCF. METHODS: This retrospective study included 23 pwCF undergoing LD-HR chest CT with PCCT who had previously undergone LD-HR chest CT with EID-CT. An intraindividual comparison of radiation dose and image quality was conducted. The study measured the dose-length product, volumetric CT dose index, effective dose and signal-to-noise ratio (SNR). Three blinded radiologists assessed the overall image quality, image sharpness, and image noise using a 5-point Likert scale ranging from 1 (deficient) to 5 (very good) for image quality and image sharpness and from 1 (very high) to 5 (very low) for image noise. RESULTS: PCCT used approximately 42% less radiation dose than EID-CT (median effective dose 0.54 versus 0.93 mSv, p < 0.001). PCCT was consistently rated higher than EID-CT for overall image quality and image sharpness. Additionally, image noise was lower with PCCT compared to EID-CT. The average SNR of the lung parenchyma was lower with PCCT compared to EID-CT (p < 0.001). CONCLUSION: In pwCF, LD-HR chest CT protocols using PCCT scans provided significantly better image quality and reduced radiation exposure compared to EID-CT. RELEVANCE STATEMENT: In pwCF, regular follow-up could be performed through photon-counting CT instead of EID-CT, with substantial advantages in terms of both lower radiation exposure and increased image quality. KEY POINTS: Photon-counting CT (PCCT) and energy-integrating detector system CT (EID-CT) were compared in 23 people with cystic fibrosis (pwCF). Image quality was rated higher for PCCT than for EID-CT. PCCT used approximately 42% less radiation dose and offered superior image quality than EID-CT.


Asunto(s)
Fibrosis Quística , Fotones , Dosis de Radiación , Radiografía Torácica , Tomografía Computarizada por Rayos X , Fibrosis Quística/diagnóstico por imagen , Humanos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Masculino , Femenino , Adulto , Radiografía Torácica/métodos , Relación Señal-Ruido , Adulto Joven
14.
Artículo en Inglés | MEDLINE | ID: mdl-39298291

RESUMEN

SiOx electrodes are promising for high-energy-density lithium-ion batteries (LIBs) due to their ability to mitigate volume expansion-induced degradation. Here, we investigate the surface dynamics of SiOx thin-film electrodes cycled in different carbonate-based electrolytes using a combination of ex situ X-ray photoelectron spectroscopy (XPS) and operando synchrotron X-ray reflectivity analyses. The thin-film geometry allows us to probe the depth-dependent chemical composition and electron density from surface to current collector through the solid electrolyte interphase (SEI), the active material, and the thickness evolution during cycling. Results reveal that SiOx lithiation initiates below 0.4 V vs Li+/Li and indicate a close relationship between SEI formation and SiOx electrode lithiation, likely due to the high resistivity of SiOx. We find similar chemical compositions for the SEI in FEC-containing and FEC-free electrolytes but observe a reduced thickness in the former case. In both cases, the SEI thickness decreases during delithiation due to the removal or dissolution of some carbonate species. These findings give insights into the (de)lithiation of SiOx, in particular, during the formation stage, and the effect of the presence of FEC in the electrolyte on the evolution of the SEI during cycling.

15.
J Radiol Prot ; 44(3)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39265583

RESUMEN

A dosimeter should ideally be calibrated in a reference field with similar energy and doserate to that which the dosimeter is being used to measure. Environments around nuclear reactors and radiation therapy facilities have high-energy photons with energies exceeding that of60Co gamma rays, and controlling exposure to these photons is important. The Japan Atomic Energy Agency and National Metrology Institute of Japan have high-energy reference fields with energies above several megaelectronvolts for different types of accelerators. Their reference fields have different fluence-energy distributions. In this study, the energy dependencies of the two-cavity ionization chambers, which are often used by secondary standard laboratories, were experimentally and computationally evaluated for each high-energy field. These results agreed well within the relative expanded uncertainties (k= 2), and their capabilities for air kerma measurements in each high-energy reference field were confirmed. Therefore, the capabilities of the air-kerma measurements were verified in the two high-energy reference fields.


Asunto(s)
Fotones , Protección Radiológica , Protección Radiológica/normas , Japón , Radiometría , Dosis de Radiación , Calibración , Dosímetros de Radiación , Diseño de Equipo , Monitoreo de Radiación/métodos , Monitoreo de Radiación/instrumentación
16.
Int J Biol Macromol ; 280(Pt 1): 135652, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278443

RESUMEN

Gelatin (Gel) based water-insoluble films with antimicrobial properties were developed by the green method using trans-cinnamaldehyde (TCA) and low-energy X-ray irradiation as dual crosslinkers. The Gel/TCA composite films (GTCF) were prepared at different pH (4, 6, 8, and 10) and crosslinked by incorporating 5 % (w/w, based on Gel) TCA and X-ray irradiation (350 kV and 11.4 mA) with doses of 0, 5, 10 and 15 kGy. The presence of TCA in GTCF forms dense, flexible, and strong films when exposed to X-ray irradiation. The GTCF at pH 6, incorporated with 5 wt% TCA and irradiated with 10 kGy X-ray, displayed the highest degree of crosslinking (DOC) (93.4 ± 3.4 %), tensile strength, excellent UV-barrier (> 99.9 %), antimicrobial (inhibitory capacity of >50 %), and water vapor permeability (4.1 ± 0.6 g.mm/m2.day. kPa), and low solubility in water (0.5 ± 0.3 %), and oxygen permeability. The GTCF, crosslinked with X-ray irradiation, has multifunctional properties and strong potential in the sustainable packaging industry to augment the shelf life of food and reduce food waste. To the best of our information, this is the first and novel report investigating the effects of pH on the properties of GTCF crosslinked with X-ray.

17.
Nano Lett ; 24(37): 11690-11696, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39225657

RESUMEN

Precise monitoring of biomolecular radiation damage is crucial for understanding X-ray-induced cell injury and improving the accuracy of clinical radiotherapy. We present the design and performance of lanthanide-DNA-origami nanodosimeters for directly visualizing radiation damage at the single-particle level. Lanthanide ions (Tb3+ or Eu3+) coordinated with DNA origami nanosensors enhance the sensitivity of X-ray irradiation. Atomic force microscopy (AFM) revealed morphological changes in Eu3+-sensitized DNA origami upon X-ray irradiation, indicating damage caused by ionization-generated electrons and free radicals. We further demonstrated the practical applicability of Eu3+-DNA-origami integrated chips in precisely monitoring radiation-mediated cancer radiotherapy. Quantitative results showed consistent trends with flow cytometry and histological examination under comparable X-ray irradiation doses, providing an affordable and user-friendly visualization tool for preclinical applications. These findings provide new insights into the impact of heavy metals on radiation-induced biomolecular damage and pave the way for future research in developing nanoscale radiation sensors for precise clinical radiography.


Asunto(s)
ADN , Elementos de la Serie de los Lantanoides , Microscopía de Fuerza Atómica , ADN/química , ADN/análisis , Humanos , Elementos de la Serie de los Lantanoides/química , Rayos X , Daño del ADN , Europio/química
18.
Nano Lett ; 24(37): 11747-11755, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39225661

RESUMEN

The utilization of perovskite materials in flexible optoelectronics is experiencing distinct diversification including X-ray detection applications. Here, we report the oriented alignment of cesium lead bromide (CsPbBr3) single-crystal arrays on flexible polydimethylsiloxane (PDMS) substrates. By precisely confining the crystallization process within spatially delimited precursor droplets, we achieve a well-oriented crystal alignment through the spontaneous rotation of the CsPbBr3 microcuboids. This approach allows for precise control over the microcuboid morphologies by varying the growth temperature. We design flexible X-ray detector arrays by seamlessly integrating CsPbBr3 microcuboids with electrode arrays. The flexible X-ray detector can output a high sensitivity of 1.97 × 105 µC·Gyair-1·cm-2 and a low detection limit of 89 nGyair·s-1 after the surface passivation process. The excellent mechanical properties, outstanding X-ray detection capabilities, and high pixel uniformity are also demonstrated in conformal X-ray imaging of curved surfaces.

19.
J Int Med Res ; 52(9): 3000605241276491, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39268760

RESUMEN

OBJECTIVE: The relationship between the surgical approach used for hemiarthroplasty and periprosthetic bone mineral density (BMD) is not well understood. We have previously described a decrease in BMD 1 year postoperatively. Here, we assessed the medium-term changes in periprosthetic BMD. METHODS: We performed a follow-up study of patients with femoral neck fracture (FNF) who underwent uncemented hemiarthoplasty using a direct lateral or anterolateral approach. Dual-energy X-ray absorptiometry (DXA) was used to evaluate the changes in BMD in 23 patients over 5 years. RESULTS: A mean 6% loss of total BMD occurred over 1 year, but between 1 and 5 years, BMD was restored to the baseline value. The mean total BMD in the anterolateral group had decreased by 2% after 3 months and 3% after 12 months, and increased by 2% after 5 years, vs. decreases of 7%, 8%, and 3% for the direct lateral group. Between 1 and 5 years, BMD increased in Gruen zones 2, 3, 4, 5, and 6 in both groups. There was a significantly larger increase in zone 4 in the lateral group (4%) than the anterolateral group. CONCLUSION: The surgical approach affects periprosthetic BMD in patients with FNF. Furthermore, BMD is restored to the baseline value 5 years postoperatively.ClinicalTrials.gov registration number: NCT03753100.


Asunto(s)
Absorciometría de Fotón , Densidad Ósea , Fracturas del Cuello Femoral , Humanos , Femenino , Masculino , Anciano , Fracturas del Cuello Femoral/cirugía , Fracturas del Cuello Femoral/diagnóstico por imagen , Estudios de Seguimiento , Persona de Mediana Edad , Resultado del Tratamiento , Anciano de 80 o más Años , Hemiartroplastia/métodos , Artroplastia de Reemplazo de Cadera/métodos , Artroplastia de Reemplazo de Cadera/efectos adversos
20.
ACS Appl Bio Mater ; 7(9): 5784-5794, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39226406

RESUMEN

Hydrated dispersions containing equimolar mixtures of cationic and anionic amphiphiles, referred to as catanionic systems, exhibit synergistic physicochemical properties, and mixing single-chain cationic and anionic lipids can lead to the spontaneous formation of vesicles as well as other phase structures. In the present work, we have characterized two catanionic systems prepared by mixing N-acyltaurines (NATs) and sarcosine alkyl esters (SAEs) bearing 11 and 12 C atoms in the acyl/alkyl chains. Turbidimetric and isothermal titration calorimetric studies revealed that both NATs form equimolar complexes with SAEs having matching acyl/alkyl chains. The three-dimensional structure of the sarcosine lauryl ester (lauryl sarcosinate, LS)-N-lauroyltaurine (NLT) equimolar complex has been determined by single-crystal X-ray diffraction. The LS-NLT equimolar complex is stabilized by electrostatic attraction and multiple hydrogen bonds, including classical, strong N-H···O hydrogen bonds as well as several C-H···O hydrogen bonds between the two amphiphiles. DSC studies showed that both equimolar complexes show single sharp phase transitions. Transmission electron microscopy and dynamic light scattering studies have demonstrated that the LS-NLT catanionic complex assemblies yield stable medium-sized vesicles (diameter 280-350 nm). These liposomes were disrupted at high pH, suggesting that the designed catanionic complexes can be used to develop base-labile drug delivery systems. In vitro studies with these catanionic liposomes showed efficient entrapment (73% loading) and release of the anticancer drug 5-fluorouracil in the physiologically relevant pH range of 6.0-8.0. The release rate was highest at pH 8.0, reaching about 78%, 90%, and 100% drug release at 2, 6, and 12 h, respectively. These observations indicate that LS-NLT catanionic vesicles will be useful for designing drug delivery systems, particularly for targeting organs such as the colon, which are inherently at basic pH.


Asunto(s)
Materiales Biocompatibles , Fluorouracilo , Tamaño de la Partícula , Fluorouracilo/química , Estructura Molecular , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Ensayo de Materiales , Cationes/química , Sarcosina/química , Sarcosina/análogos & derivados , Ésteres/química , Humanos , Liposomas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA