Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 262(Pt 1): 130045, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336317

RESUMEN

The K239 type capsular polysaccharide (CPS) isolated from Acinetobacter baumannii isolate MAR19-4435 was studied by sugar analysis, one- and two-dimensional 1H and 13C NMR spectroscopy. K239 consists of branched heptasaccharide repeats (K-units) comprised of five residues of l-rhamnose (l-Rhap), and one residue each of d-glucuronic acid (d-GlcpA) and N-acetyl-d-glucosamine (d-GlcpNAc). The structure of K239 is closely related to that of the A. baumannii K86 CPS type, though the two differ in the 2,3-substitution patterns on the l-Rhap residue that is involved in the linkage between K-units in the CPS polymer. This structural difference was attributed to the presence of a gtr221 glycosyltransferase gene and a wzyKL239 polymerase gene in KL239 that replaces the gtr80 and wzyKL86 genes in the KL86 CPS biosynthesis gene cluster. Comparison of the two structures established the role of a novel WzyKL239 polymerase encoded by KL239 that forms the ß-d-GlcpNAc-(1→2)-l-Rhap linkage between K239 units. A. baumannii MAR19-4435 was found to be non-susceptible to infection by the APK86 bacteriophage, which encodes a depolymerase that specifically cleaves the linkage between K-units in the K86 CPS, indicating that the difference in 2,3-substitution of l-Rhap influences the susceptibility of this isolate to bacteriophage activity.


Asunto(s)
Acinetobacter baumannii , Polisacáridos Bacterianos , Polisacáridos Bacterianos/química , Acinetobacter baumannii/genética , Acinetobacter baumannii/química , Cápsulas Bacterianas/química , Nucleotidiltransferasas/genética , Familia de Multigenes
2.
Microbiol Spectr ; 11(6): e0302523, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37975684

RESUMEN

IMPORTANCE: Bacteriophage show promise for the treatment of Acinetobacter baumannii infections that resist all therapeutically suitable antibiotics. Many tail-spike depolymerases encoded by phage that are able to degrade A. baumannii capsular polysaccharide (CPS) exhibit specificity for the linkage present between K-units that make up CPS polymers. This linkage is formed by a specific Wzy polymerase, and the ability to predict this linkage using sequence-based methods that identify the Wzy at the K locus could assist with the selection of phage for therapy. However, little is known about the specificity of Wzy polymerase enzymes. Here, we describe a Wzy polymerase that can accommodate two different but similar sugars as one of the residues it links and phage depolymerases that can cleave both types of bond that Wzy forms.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Humanos , Acinetobacter baumannii/genética , Cápsulas Bacterianas/metabolismo , Familia de Multigenes , Polisacáridos Bacterianos/análisis
3.
EcoSal Plus ; 11(1): eesp00202022, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36622162

RESUMEN

The O-antigen, a long polysaccharide that constitutes the distal part of the outer membrane-anchored lipopolysaccharide, is one of the critical components in the protective outer membrane of Gram-negative bacteria. Most species produce one of the structurally diverse O-antigens, with nearly all the polysaccharide components having complex structures made by the Wzx/Wzy pathway. This pathway produces repeat-units of mostly 3-8 sugars on the cytosolic face of the cytoplasmic membrane that is translocated by Wzx flippase to the periplasmic face and polymerized by Wzy polymerase to give long-chain polysaccharides. The Wzy polymerase is a highly diverse integral membrane protein typically containing 10-14 transmembrane segments. Biochemical evidence confirmed that Wzy polymerase is the sole driver of polymerization, and recent progress also began to demystify its interacting partner, Wzz, shedding some light to speculate how the proteins may operate together during polysaccharide biogenesis. However, our knowledge of how the highly variable Wzy proteins work as part of the O-antigen processing machinery remains poor. Here, we discuss the progress to the current understanding of repeat-unit polymerization and propose an updated model to explain the formation of additional short chain O-antigen polymers found in the lipopolysaccharide of diverse Gram-negative species and their importance in the biosynthetic process.


Asunto(s)
Proteínas Bacterianas , Antígenos O , Antígenos O/química , Antígenos O/metabolismo , Proteínas Bacterianas/metabolismo , Lipopolisacáridos , Polisacáridos Bacterianos , Bacterias Gramnegativas/metabolismo
4.
Microbiol Spectr ; 10(3): e0150321, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35475638

RESUMEN

A comprehensive understanding of capsular polysaccharide (CPS) diversity is critical to implementation of phage therapy to treat panresistant Acinetobacter baumannii infections. Predictions from genome sequences can assist identification of the CPS type but can be complicated if genes outside the K locus (CPS biosynthesis gene cluster) are involved. Here, the CPS produced by A. baumannii clinical isolate 36-1454 carrying a novel K locus, KL127, was determined and compared to other CPSs. KL127 differs from KL128 in only two of the glycosyltransferase (gtr) genes. The K127 unit in 36-1454 CPS was the pentasaccharide ß-d-Glcp-(1→6)-d-ß-GalpNAc-(1→6)-α-d-Galp-(1→6)-ß-d-Glсp-(1→3)-ß-d-GalpNAc in which d-Glcp at position 4 replaces d-Galp in K128, and the glycosyltransferases encoded by the different gtr genes form the surrounding linkages. However, although the KL127 and KL128 gene clusters encode nearly identical Wzy polymerases, the linkages between K units that form the CPS chains are different, i.e., ß-d-GalpNAc-(1→3)-d-Galp in 36-1454 (K127) and ß-d-GalpNAc-(1→4)-d-Galp in KZ-1093 (K128). The linkage between K127 units in 36-1454 is the same as the K-unit linkage in five known CPS structures, and a gene encoding a Wzy protein related to the Wzy of the corresponding K loci was found encoded in a prophage genome in the 36-1454 chromosome. Closely related Wzy proteins were encoded in unrelated phage in available KL127-carrying genomes. However, a clinical isolate, KZ-1257, carrying KL127 but not the prophage was found, and K127 units in the KZ-1257 CPS were ß-d-GalpNAc-(1→4)-d-Galp linked, confirming that WzyKL127 forms this linkage and thus that the phage-encoded WzyPh1 forms the ß-d-GalpNAc-(1→3)-d-Galp linkage in 36-1454. IMPORTANCE Bacteriophage therapy is an attractive innovative treatment for infections caused by extensively drug resistant Acinetobacter baumannii, for which there are few effective antibiotic treatments remaining. Capsular polysaccharide (CPS) is a primary receptor for many lytic bacteriophages, and thus knowledge of the chemical structures of CPS produced by the species will underpin the identification of suitable phages for therapeutic cocktails. However, recent research has shown that some isolates carry additional genes outside of the CPS biosynthesis K locus, which can modify the CPS structure. These changes can subsequently alter phage receptor sites and may be a method utilized for natural phage resistance. Hence, it is critical to understand the genetics that drive CPS synthesis and the extent to which genes outside of the K locus can affect the CPS structure.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Acinetobacter baumannii/química , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Cápsulas Bacterianas/metabolismo , Humanos , Polimerizacion , Polisacáridos Bacterianos/metabolismo
5.
J Bacteriol ; 202(19)2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32778557

RESUMEN

Myxococcus xanthus arranges into two morphologically distinct biofilms depending on its nutritional status, i.e., coordinately spreading colonies in the presence of nutrients and spore-filled fruiting bodies in the absence of nutrients. A secreted polysaccharide, referred to as exopolysaccharide (EPS), is a structural component of both biofilms and is also important for type IV pilus-dependent motility and fruiting body formation. Here, we characterize the biosynthetic machinery responsible for EPS biosynthesis using bioinformatics, genetics, heterologous expression, and biochemical experiments. We show that this machinery constitutes a Wzx/Wzy-dependent pathway dedicated to EPS biosynthesis. Our data support that EpsZ (MXAN_7415) is the polyisoprenyl-phosphate hexose-1-phosphate transferase responsible for the initiation of the repeat unit synthesis. Heterologous expression experiments support that EpsZ has galactose-1-P transferase activity. Moreover, MXAN_7416, renamed WzxEPS, and MXAN_7442, renamed WzyEPS, are the Wzx flippase and Wzy polymerase responsible for translocation and polymerization of the EPS repeat unit, respectively. In this pathway, EpsV (MXAN_7421) also is the polysaccharide copolymerase and EpsY (MXAN_7417) the outer membrane polysaccharide export (OPX) protein. Mutants with single in-frame deletions in the five corresponding genes had defects in type IV pilus-dependent motility and a conditional defect in fruiting body formation. Furthermore, all five mutants were deficient in type IV pilus formation, and genetic analyses suggest that EPS and/or the EPS biosynthetic machinery stimulates type IV pilus extension. Additionally, we identify a polysaccharide biosynthesis gene cluster, which together with an orphan gene encoding an OPX protein make up a complete Wzx/Wzy-dependent pathway for synthesis of an unknown polysaccharide.IMPORTANCE The secreted polysaccharide referred to as exopolysaccharide (EPS) has important functions in the social life cycle of M. xanthus; however, little is known about how EPS is synthesized. Here, we characterized the EPS biosynthetic machinery and showed that it makes up a Wzx/Wzy-dependent pathway for polysaccharide biosynthesis. Mutants lacking a component of this pathway had reduced type IV pilus-dependent motility and a conditional defect in development. These analyses also suggest that EPS and/or the EPS biosynthetic machinery is important for type IV pilus formation.


Asunto(s)
Vías Biosintéticas/genética , Vías Biosintéticas/fisiología , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/genética , Biopelículas , Fimbrias Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Lipopolisacáridos , Familia de Multigenes , Myxococcus xanthus/citología
6.
Carbohydr Res ; 485: 107814, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31539669

RESUMEN

The structure of the K128 capsular polysaccharide (CPS) produced by Acinetobacter baumannii isolate KZ-1093 from Kazakhstan was established by sugar analysis and Smith degradation along with 1D and 2D 1H and 13C NMR spectroscopy. The CPS was found to consist of branched pentasaccharide repeating units containing only neutral sugars, and its composition and topology are closely related to those of the A. baumannii K116 CPS. The K128 and K116 oligosaccharide units differ in the linkage between the disaccharide side chain and the main chain, with a ß-(1 → 6) linkage in K128 replacing a ß-(1 → 4) linkage in K116. The linkages between the repeating units in the K128 and K116 CPSs are also different, with K128 units linked by ß-d-GalpNAc-(1 → 4)-d-Galp, and ß-d-GalpNAc-(1 → 3)-d-Galp linkages between K116 units. The KZ-1093 genome was sequenced and the CPS biosynthesis gene cluster at the chromosomal K locus was designated KL128. Consistent with the CPS structures, KL128 differs from KL116 in one glycosyltransferase gene and the gene for the Wzy polymerase. In KL128, the gtr200 glycosyltransferase gene replaces gtr76 in KL116, and Gtr200 was therefore assigned to the different ß-d-GalpNAc-(1 → 6)-d-Galp linkage in K128. Similarly, the WzyK128 polymerase could be assigned to the ß-d-GalpNAc-(1 → 4)-d-Galp linkage between the K128 units.


Asunto(s)
Acinetobacter baumannii/química , Cápsulas Bacterianas/química , Polisacáridos Bacterianos/química , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Kazajstán , Familia de Multigenes , Polisacáridos Bacterianos/biosíntesis
7.
Front Microbiol ; 8: 70, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28217109

RESUMEN

Bacteria evolving resistance against the action of multiple drugs and its ability to disseminate the multidrug resistance trait(s) across various strains of the same bacteria or different bacterial species impose serious threat to public health. Evolution of such multidrug resistance is due to the fact that, most of the antibiotics target bacterial survival mechanisms which exert selective pressure on the bacteria and aids them to escape from the action of antibiotics. Nonetheless, targeting bacterial virulence strategies such as bacterial surface associated polysaccharides biosynthesis and their surface accumulation mechanisms may be an attractive strategy, as they impose less selective pressure on the bacteria. Capsular polysaccharide (CPS) or K-antigen that is located on the bacterial surface armors bacteria from host immune response. Thus, unencapsulating bacteria would be a good strategy for drug design, besides CPS itself being a good vaccine target, by interfering with CPS biosynthesis and surface assembly pathway. Gram-negative Escherichia coli uses Wzy-polymerase dependent (Groups 1 and 4) and ATP dependent (Groups 1 and 3) pathways for CPS production. Considering E. coli as a case in point, this review explains the structure and functional roles of proteins involved in Group 1 Wzy dependent CPS biosynthesis, surface expression and anchorage in relevance to drug and vaccine developments.

8.
Carbohydr Res ; 435: 173-179, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27810710

RESUMEN

Capsular polysaccharides were recovered from four Acinetobacter baumannii isolates, and the following related structures of oligosaccharide repeating units were established by sugar analyses along with 1D and 2D 1H and 13C NMR spectroscopy: NIPH 60 and LUH5544 (K43) NIPH 601 (K47) The K locus for capsule biosynthesis in the genome sequences available for NIPH 60 and LUH5544, designated KL43, was found to be related to gene clusters KL47 in NIPH 601 and KL88 in LUH5548. The three clusters share most gene content differing in only a small portion that includes an additional glycosyltransferase genes in KL47 and KL88, as well as genes encoding distinct Wzy polymerases that were found to form the same α-d-GlcpNAc-(1 â†’ 6)-α-d-GlcpNAc linkage in K43 and K47.


Asunto(s)
Acinetobacter baumannii/aislamiento & purificación , Cápsulas Bacterianas/genética , Polisacáridos Bacterianos/química , Acinetobacter baumannii/genética , Cápsulas Bacterianas/química , Secuencia de Carbohidratos , Espectroscopía de Resonancia Magnética , Familia de Multigenes
9.
Glycobiology ; 26(5): 501-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26711304

RESUMEN

Capsular polysaccharides (CPSs), from Acinetobacter baumannii isolates 1432, 4190 and NIPH 70, which have related gene content at the K locus, were examined, and the chemical structures established using 2D(1)H and(13)C NMR spectroscopy. The three isolates produce the same pentasaccharide repeat unit, which consists of 5-N-acetyl-7-N-[(S)-3-hydroxybutanoyl] (major) or 5,7-di-N-acetyl (minor) derivatives of 5,7-diamino-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonic (legionaminic) acid (Leg5Ac7R), D-galactose, N-acetyl-D-galactosamine and N-acetyl-D-glucosamine. However, the linkage between repeat units in NIPH 70 was different to that in 1432 and 4190, and this significantly alters the CPS structure. The KL27 gene cluster in 4190 and KL44 gene cluster in NIPH 70 are organized identically and contain lga genes for Leg5Ac7R synthesis, genes for the synthesis of the common sugars, as well as anitrA2 initiating transferase and four glycosyltransferases genes. They share high-level nucleotide sequence identity for corresponding genes, but differ in the wzy gene encoding the Wzy polymerase. The Wzy proteins, which have different lengths and share no similarity, would form the unrelated linkages in the K27 and K44 structures. The linkages formed by the four shared glycosyltransferases were predicted by comparison with gene clusters that synthesize related structures. These findings unambiguously identify the linkages formed by WzyK27 and WzyK44, and show that the presence of different wzy genes in otherwise closely related K gene clusters changes the structure of the CPS. This may affect its capacity as a protective barrier for A. baumannii.


Asunto(s)
Acinetobacter baumannii/metabolismo , Cápsulas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Familia de Multigenes , Polisacáridos Bacterianos/metabolismo , Acinetobacter baumannii/genética , Cápsulas Bacterianas/genética , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Polisacáridos Bacterianos/genética
10.
Can J Microbiol ; 60(11): 697-716, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25358682

RESUMEN

The surfaces of bacteria mediate a multitude of functions in the environment and in an infected host, including adhesion to both biotic and abiotic substrata, motility, immune system interaction and (or) activation, biofilm formation, and cell-cell communication, with many of these features directly influenced by cell-surface glycans. In both Gram-negative and Gram-positive bacteria, the majority of cell-surface polysaccharides are produced via the Wzx/Wzy-dependent assembly pathway; these glycans include heteropolymeric O-antigen, enterobacterial common antigen, exopolysaccharide, spore coat, and capsule in diverse bacteria. The key components of this assembly pathway are the integral inner membrane Wzx flippase, Wzy polymerase, and Wzz chain-length regulator proteins, which until recently have resisted detailed structural and functional characterization. In this review, we have provided a comprehensive synthesis of the latest structural and mechanistic data for each protein, as well as an examination of substrate specificity for each assembly step and complex formation between the constituent proteins. To complement the unprecedented explosion of genomic-sequencing data for bacteria, we have also highlighted both classical and state-of-the-art methods by which encoded Wzx, Wzy, and Wzz proteins can be reliably identified and annotated, using the model Gram-negative bacterium Pseudomonas aeruginosa as an example data set. Lastly, we outline future avenues of research, with the aim of stimulating researchers to take the next steps in investigating the function of, and interplay between, the constituents of this widespread assembly scheme.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Glicosiltransferasas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Polisacáridos Bacterianos/biosíntesis , Pseudomonas aeruginosa/metabolismo , Bacterias/química , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Vías Biosintéticas , Membrana Celular/química , Membrana Celular/metabolismo , Genes Bacterianos , Glicosiltransferasas/química , Glicosiltransferasas/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Antígenos O/biosíntesis , Antígenos O/química , Antígenos O/genética , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/genética , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA