Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38930885

RESUMEN

Carboxymethyl cellulose (CMC) and polylactic acid (PLA) are recognized for their environmental friendliness. By merging them into a composite film, packaging solutions can be designed with good performance. Nonetheless, the inherent interface disparity between CMC and PLA poses a challenge, and there may be layer separation issues. This study introduces a straightforward approach to mitigate this challenge by incorporating tannin acid and ferric chloride in the fabrication of the CMC-PLA. The interlayer compatibility was improved by the in situ formation of a cohesive interface. The resulting CMC/TA-PLA/Fe multilayer film, devoid of any layer separation, exhibits exceptional mechanical strength, with a tensile strength exceeding 70 MPa, a high contact angle of 105°, and superior thermal stability. Furthermore, the CMC/TA-PLA/Fe film demonstrates remarkable efficacy in blocking ultraviolet light, effectively minimizing the discoloration of various wood surfaces exposed to UV aging.

2.
Appl Microbiol Biotechnol ; 108(1): 202, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349550

RESUMEN

Aureobasidium is omnipresent and can be isolated from air, water bodies, soil, wood, and other plant materials, as well as inorganic materials such as rocks and marble. A total of 32 species of this fungal genus have been identified at the level of DNA, of which Aureobasidium pullulans is best known. Aureobasidium is of interest for a sustainable economy because it can be used to produce a wide variety of compounds, including enzymes, polysaccharides, and biosurfactants. Moreover, it can be used to promote plant growth and protect wood and crops. To this end, Aureobasidium cells adhere to wood or plants by producing extracellular polysaccharides, thereby forming a biofilm. This biofilm provides a sustainable alternative to petrol-based coatings and toxic chemicals. This and the fact that Aureobasidium biofilms have the potential of self-repair make them a potential engineered living material avant la lettre. KEY POINTS: •Aureobasidium produces products of interest to the industry •Aureobasidium can stimulate plant growth and protect crops •Biofinish of A. pullulans is a sustainable alternative to petrol-based coatings •Aureobasidium biofilms have the potential to function as engineered living materials.


Asunto(s)
Aureobasidium , Biopelículas , Carbonato de Calcio , Productos Agrícolas , Gasolina
3.
Insects ; 15(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38249075

RESUMEN

Naturally durable wood pre-dates preservative-treated wood and has been demonstrated to offer a suitable service life for certain applications where preservative-treated wood is not feasible. Heartwood extractives have been demonstrated to impart bio-deteriorative resistance to naturally durable wood species. These extractives are typically found in the heartwood of living trees and are produced either by the death of parenchyma cells or as the result of external stimuli. The mechanisms of natural durability are not well understood, as heartwood extractives can be extremely variable in their distribution, composition, and efficacy in both living and harvested trees. The underlying complexity of heartwood extractives has hindered their standardization in residential building codes for use as wood preservatives. The use of naturally durable lumber is not always feasible, as woods with exceptionally durable heartwood do not typically yield lumber with acceptable machining properties. A potential approach to overcome the inherent difficulty in establishing guidelines for the appropriate use of naturally durable wood is to focus solely on the extractives as a source of bioactive protectants based on the strategies used on living and dead wood to repel the agents of biodeterioration. This critical review summarizes the relevant literature on naturally durable woods, their extractives, and their potential use as bio-inspired wood protectants. An additional discussion will be aimed at underscoring the past difficulties in adopting this approach and how to overcome the future hurdles.

4.
Polymers (Basel) ; 15(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36987366

RESUMEN

Discoloration of wood coatings due to fungal growth negatively affects the aesthetic properties of the coatings, and new ways to control fungal growth on coatings are needed. For this reason, silver nanoparticles (AgNPs) have been incorporated in acrylic latexes as antifungal agents. Using miniemulsion polymerization, latexes were prepared with two types of initiators (hydrophilic and hydrophobic) to assess the influence of the initiator type on AgNPs dispersion, both within the latex particles and the dry film. In addition, the impact of NP dispersion on resistance to black-stain fungi (Aureobasidium pullulans) was also evaluated. Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis indicates that acrylic latexes prepared with azobisisobutyronitrile (AIBN) as the initiator contain more AgNPs than those prepared with potassium persulfate (KPS). Cryo-TEM and SEM analyses show that the distribution of the AgNPs within the polymer particles is influenced by the nature of the initiator. When AIBN, a hydrophobic initiator, is used, the AgNPs appear to be closer to the surface of the polymer particles and more evenly distributed. However, the antifungal efficiency of the AgNPs-embedded latexes against A. pullulans is found to be higher when KPS is used, despite this initiator leading to a smaller amount of incorporated AgNPs and a less uniform dispersion of the nanoparticles.

5.
J Fungi (Basel) ; 8(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36547632

RESUMEN

This work deals with the durability of a Pinus elliotti wood impregnated with alumina (Al2O3) particles. The samples were impregnated at three different Al2O3 weight fractions (c.a. 0.1%, 0.3% and 0.5%) and were then exposed to two wood-rot fungi, namely white-rot fungus (Trametes versicolor) and brown-rot fungus (Gloeophyllum trabeum). Thermal and chemical characteristics were evaluated by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric (TG) analyses. The wood which incorporated 0.3 wt% of Al2O3 presented a weight loss 91.5% smaller than the untreated wood after being exposed to the white-rot fungus. On the other hand, the highest effectiveness against the brown-rot fungus was reached by the wood treated with 5 wt% of Al2O3, which presented a mass loss 91.6% smaller than that of the untreated pine wood. The Al2O3-treated woods presented higher antifungal resistances than the untreated ones in a way that: the higher the Al2O3 content, the higher the thermal stability. In general, the impregnation of the Al2O3 particles seems to be a promising treatment for wood protection against both studied wood-rot fungi. Additionally, both FT-IR and TG results were valuable tools to ascertain chemical changes ascribed to fungal decay.

6.
Molecules ; 27(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36234929

RESUMEN

The biodegradation of wood and wood products caused by fungi is recognized as one of the most significant problems worldwide. To extend the service life of wood products, wood is treated with preservatives, often with inorganic compounds or synthetic pesticides that have a negative impact on the environment. Therefore, the development of new, environmentally friendly wood preservatives is being carried out in research centers around the world. The search for natural, plant, or animal derivatives as well as obtaining synthetic compounds that will be safe for humans and do not pollute the environment, while at the same time present biological activity is crucial in terms of environmental protection. The review paper presents information in the literature on the substances and chemical compounds of natural origin (plant and animal derivatives) and synthetic compounds with a low environmental impact, showing antifungal properties, used in research on the ecological protection of wood. The review includes literature reports on the potential application of various antifungal agents including plant extracts, alkaloids, essential oils and their components, propolis extract, chitosan, ionic liquids, silicon compounds, and nanoparticles as well as their combinations.


Asunto(s)
Quitosano , Líquidos Iónicos , Aceites Volátiles , Plaguicidas , Própolis , Animales , Antifúngicos/química , Antifúngicos/farmacología , Humanos , Extractos Vegetales/química , Compuestos de Silicona , Madera/microbiología
7.
Polymers (Basel) ; 13(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502926

RESUMEN

Fire protection has been a major challenge in wood construction for many years, mainly due to the high flame spread risk associated with wood flooring. Wood fire-retardancy is framed by two main axes: coating and bulk impregnation. There is a growing need for economically and environmentally friendly alternatives. The study of polyelectrolyte complexes (PECs) for wood substrates is in its infancy, but PECs' versatility and eco-friendly character are already recognized for fabric fire-retardancy fabrics. In this study, a new approach to PEC characterization is proposed. First, PECs, which consist of polyethyleneimine and sodium phytate, were chemically and thermally characterized to select the most promising systems. Then, yellow birch (Betula alleghaniensis Britt.) was surface-impregnated under reduced pressure with the two PECs identified as the best options. Overall, wood fire-retardancy was improved with a low weight gain of 2 wt.% without increasing water uptake.

8.
Philos Trans A Math Phys Eng Sci ; 379(2206): 20200339, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34334029

RESUMEN

Wood is considered the most important renewable resource for a future sustainable bioeconomy. It is traditionally used in the building sector, where it has gained importance in recent years as a sustainable alternative to steel and concrete. Additionally, it is the basis for the development of novel bio-based functional materials. However, wood's sustainability as a green resource is often diminished by unsustainable processing and modification techniques. They mostly rely on fossil-based precursors and yield inseparable hybrids and composites that cannot be reused or recycled. In this article, we discuss the state of the art of environmental sustainability in wood science and technology. We give an overview of established and upcoming approaches for the sustainable production of wood-based materials. This comprises wood protection and adhesion for the building sector, as well as the production of sustainable wood-based functional materials. Moreover, we elaborate on the end of lifetime perspective of wood products. The concept of wood cascading is presented as a possibility for a more efficient use of the resource to increase its beneficial impact on climate change mitigation. We advocate for a holistic approach in wood science and technology that not only focuses on the material's development and production but also considers recycling and end of lifetime perspectives of the products. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.


Asunto(s)
Ciencia de los Materiales , Reciclaje , Cambio Climático
9.
Polymers (Basel) ; 13(15)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34372003

RESUMEN

Many materials and additives perform well as fire retardants and suppressants, but there is an ever-growing list of unfulfilled demands requiring new developments. This work explores the outstanding dispersant and adhesive performances of cellulose to create a new effective fire-retardant: exfoliated and reassembled graphite (ERG). This is a new 2D polyfunctional material formed by drying aqueous dispersions of graphite and cellulose on wood, canvas, and other lignocellulosic materials, thus producing adherent layers that reduce the damage caused by a flame to the substrates. Visual observation, thermal images and surface temperature measurements reveal fast heat transfer away from the flamed spots, suppressing flare formation. Pinewood coated with ERG underwent standard flame resistance tests in an accredited laboratory, reaching the highest possible class for combustible substrates. The fire-retardant performance of ERG derives from its thermal stability in air and from its ability to transfer heat to the environment, by conduction and radiation. This new material may thus lead a new class of flame-retardant coatings based on a hitherto unexplored mechanism for fire retardation and showing several technical advantages: the precursor dispersions are water-based, the raw materials used are commodities, and the production process can be performed on commonly used equipment with minimal waste.

10.
Polymers (Basel) ; 13(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202580

RESUMEN

In recent years, awareness regarding sustainability and the responsible usage of natural resources has become more important in our modern society. As a result, wood as a building material experiences a renaissance. However, depending on the use case, protective measures may be necessary to increase wood's durability and prolong its service life. The chemical vapor deposition (CVD) of parylene-N layers offers an interesting alternative to solvent-based and potentially environmentally harmful coating processes. The CVD process utilized in this study generated transparent, uniform barrier layers and can be applied on an extensive range of substrates without the involvement of any solvents. In this study, European beech wood samples (Fagus sylvatica L.) were coated with parylene-N using the CVD process, with paracyclophane as a precursor. The aim of the study was to analyze the water absorption of beech wood, in relation to the different layer thicknesses of parylene-N. Therefore, four different coating thicknesses from 0.5 to 40 µm were deposited, depending on the initial amount of precursor used. The deposited layers were analyzed by reflection interference spectroscopy and scanning electron microscopy, and their chemical structures and compositions were investigated by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. Due to the chemical structure of parylene-N, the deposited layers led to a significantly increased water contact angle and reduced the water uptake by 25-34% compared to the uncoated reference samples. A linear correlation between layer thickness and water absorption was observed. The coating of wood with parylene-N provides a promising water barrier, even with thin layers.

11.
Environ Sci Pollut Res Int ; 27(3): 3076-3085, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31838694

RESUMEN

This study evaluated the effect of wood extracts from Tectona grandis, Dalbergia sissoo, Cedrus deodara, and Pinus roxburghii combined with linseed oil as protectants of two non-durable wood species against the termite, Heterotermes indicola. Heartwood blocks (19 × 19 × 19 mm) and wood shavings were extracted using an ethanol/toluene (2:1) solvent system. Results of choice and no-choice tests with solvent-extracted and non-extracted heartwood blocks showed greater wood mass loss from termite feeding on solvent-extracted blocks compared with non-extracted blocks for all wood species. Significantly higher termite mortality was observed after termite exposure to non-extracted blocks compared with extracted blocks for all durable species. Sapwood blocks of two non-durable wood species (southern pine and cottonwood) were vacuum/pressure impregnated separately with each of the four types of extract at a concentration of 7.5 mg ml-1, linseed oil (20%) and a mixture of oil (20%) and extracts (4.25 mg ml-1) for the laboratory and field tests. Results showed that extract-oil mixture imparted significantly higher termite resistance compared with linseed or extracts alone under laboratory conditions. This apparent synergistic effect was clearly noted when linseed oil was combined with extracts from T. grandis or D. sissoo followed by an extract-oil mixture using C. deodara. These extract oil mixtures showed significantly less weight loss for the treated non-durable wood species and higher termite mortality (83-100%) compared with the control treatments and other extract-linseed oil mixtures tested. Treatment of both non-durable wood species with T. grandis + oil and D. sissoo + oil prevented termite damage compared with other treatments when blocks and stakes were exposed in the field for a period of 2 years. Results of the current study indicated that a mixture of a particular heartwood extract with linseed oil has potential to be used as environmentally friendly wood protectants.


Asunto(s)
Isópteros , Aceite de Linaza , Extractos Vegetales/toxicidad , Madera , Animales , Cucarachas , Sinergismo Farmacológico
12.
Artículo en Inglés | MEDLINE | ID: mdl-28955471

RESUMEN

BACKGROUND: Biofinished wood is considered to be a decorative and protective material for outdoor constructions, showing advantages compared to traditional treated wood in terms of sustainability and self-repair. Natural dark wood staining fungi are essential to biofinish formation on wood. Although all sorts of outdoor situated timber are subjected to fungal staining, the homogenous dark staining called biofinish has only been detected on specific vegetable oil-treated substrates. Revealing the fungal composition of various natural biofinishes on wood is a first step to understand and control biofinish formation for industrial application. RESULTS: A culture-based survey of fungi in natural biofinishes on oil-treated wood samples showed the common wood stain fungus Aureobasidium and the recently described genus Superstratomyces to be predominant constituents. A culture-independent approach, based on amplification of the internal transcribed spacer regions, cloning and Sanger sequencing, resulted in clone libraries of two types of biofinishes. Aureobasidium was present in both biofinish types, but was only predominant in biofinishes on pine sapwood treated with raw linseed oil. Most cloned sequences of the other biofinish type (pine sapwood treated with olive oil) could not be identified. In addition, a more in-depth overview of the fungal composition of biofinishes was obtained with Illumina amplicon sequencing that targeted the internal transcribed spacer region 1. All investigated samples, that varied in wood species, (oil) treatments and exposure times, contained Aureobasidium and this genus was predominant in the biofinishes on pine sapwood treated with raw linseed oil. Lapidomyces was the predominant genus in most of the other biofinishes and present in all other samples. Surprisingly, Superstratomyces, which was predominantly detected by the cultivation-based approach, could not be found with the Illumina sequencing approach, while Lapidomyces was not detected in the culture-based approach. CONCLUSIONS: Overall, the culture-based approach and two culture-independent methods that were used in this study revealed that natural biofinishes were composed of multiple fungal genera always containing the common wood staining mould Aureobasidium. Besides Aureobasidium, the use of other fungal genera for the production of biofinished wood has to be considered.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 171: 395-400, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27569772

RESUMEN

In this study, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and Fourier-transform Raman (FT-Raman) spectroscopy techniques were used to determine changes in the chemical structure of heat-treated woods. For this purpose, scots pine (Pinus sylvestris L.), oriental beech (Fagus orientalis L.), and oriental spruce (Picea orientalis L.) wood species were heat-treated at different temperatures. The effect of chemical changes on the FT-Raman and ATR-FTIR bands or ratios of heat-treated wood was related with the OH association of cellulose, functional groups, and the aromatic system of lignin. The effects of heat treatment on the carbohydrate and lignin peaks varied depending on the wood species. The spectral changes that occurred after heat treatment reflected the progress of the condensation reaction of lignin. Degradation of hemicelluloses led to a decrease in free hydroxyl groups. High temperature caused crystalline cellulose to increase due to the degradation of amorphous cellulose.


Asunto(s)
Calor , Espectrometría Raman , Madera/química , Fagus/química , Picea/química , Pinus/química , Espectroscopía Infrarroja por Transformada de Fourier
14.
Int J Mol Sci ; 17(8)2016 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-27556450

RESUMEN

The aim of this study was to select effective and safe microbiocides for the disinfection and protection of historical wooden surfaces at the former Auschwitz II-Birkenau concentration and extermination camp. We tested seven active compounds against bacteria and moulds, of which didecyldimethylammonium chloride and N-(3-aminopropyl)-N-dodecylpropane-1,3-diamine were effective even at 0.02%-2%. Subsequently, eight microbiocides containing the selected active ingredients were chosen and applied three times on the surface of wood samples colonized by bacteria and moulds. ABM-1 and ABM-2-6% solution; Rocima 101-8%; Preventol R 80-12%; Acticide 706 LV-15% and Boramon-30% were the most effective disinfectants. Under laboratory conditions, ABM-1, Boramon and Rocima 101 ensured antimicrobial protection of new wood samples for six months. In situ, 30% Boramon and 8% Rocima 101 applied by spraying effectively protected the historical wood from bacterial and mould growth for 12 and 3 months, respectively. Colour and luminance of the new wood were not altered after exposure to the biocides. Boramon and Rocima 101, applied by the spraying method, caused no significant change in the colour of the historical wood. Results from this study were used to develop a procedure for the protection of wood in historical buildings against biodeterioration.


Asunto(s)
Antiinfecciosos/farmacología , Madera/microbiología , Bacterias/efectos de los fármacos , Desinfectantes/farmacología , Hongos/efectos de los fármacos , Compuestos de Amonio Cuaternario/farmacología
15.
Antonie Van Leeuwenhoek ; 109(5): 661-83, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26920754

RESUMEN

The genus Aureobasidium, which is known as a wood staining mould, has been detected on oil treated woods in the specific stain formation called biofinish. This biofinish is used to develop a new protective, self-healing and decorative biotreatment for wood. In order to understand and control biofinish formation on oil treated wood, the occurrence of different Aureobasidium species on various wood surfaces was studied. Phenotypic variability within Aureobasidium strains presented limitations of morphological identification of Aureobasidium species. PCR amplification and Sanger sequencing of ITS and RPB2 were used to identify the culturable Aureobasidium species composition in mould stained wood surfaces with and without a biofinish. The analysed isolates showed that several Aureobasidium species were present and that Aureobasidium melanogenum was predominantly detected, regardless of the presence of a biofinish and the type of substrate. A. melanogenum was detected on wood samples exposed in the Netherlands, Cameroon, South Africa, Australia and Norway. ITS-specific PCR amplification, cloning and sequencing of DNA extracted from biofinish samples confirmed results of the culturing based method: A. melanogenum is predominant within the Aureobasidium population of biofinishes on pine sapwood treated with raw linseed oil and the outdoor placement in the Netherlands.


Asunto(s)
Ascomicetos/clasificación , Ascomicetos/aislamiento & purificación , Madera/microbiología , Ascomicetos/citología , Ascomicetos/genética , Biodiversidad , ADN de Hongos/genética , ADN Ribosómico/genética , Técnicas de Tipificación Micológica , Fenotipo , Filogenia , Pinus/microbiología , Plantas/microbiología , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Madera/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA