Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(36): 49244-49254, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39060890

RESUMEN

The microalgae Chlorella sorokiniana was used for the treatment of winery wastewater (WWW). Batch experiments were initially conducted to investigate how biomass acclimatization in different media, dilution of wastewater, and addition of ammonium nitrogen (NH4-N) affect the growth of microalgae and the removal of major pollutants. Afterwards, two sequencing batch reactor (SBR) systems were tested applying different configurations and hydraulic retention times. The biomass collected at the end of the experiments was characterized for proteins, lipids, carbohydrates, amino acid profile, and the existence of lutein, ß-carotene, chlorophyll a, and tocopherols. Batch experiments showed that Chlorella sorokiniana acclimatization to urban wastewater enhanced the removal of NH4-N and total phosphorus (TP). The operation of a two-stage SBR system achieved COD and NH4-N removal equal to 85 ± 9% and 91 ± 20%, respectively, while the use of a single-stage system feeding with anaerobically pretreated WWW resulted to COD and NH4-N removal of 78 ± 9% and 95 ± 9%, respectively. Analyses of biomass showed higher protein content (up to 58.8%) in batch experiments with NH4-N addition as well as in SBR experiments. The cultivation of microalgae under SBR conditions enhanced the production of pigments and tocopherols. The maximum concentrations of 1075 mg kg-1, 45.5 mg kg-1, and 131.2 mg kg-1 were achieved for lutein, ß-carotene, and tocopherols, respectively, in the one-stage system. Our findings suggested that Chlorella sorokiniana cultivation in WWW not only removed nutrients from WWW but also could potentially serve for the production of value-added ingredients used in food industry, cosmetics, and animal feedstock.


Asunto(s)
Biomasa , Chlorella , Microalgas , Eliminación de Residuos Líquidos , Aguas Residuales , Chlorella/metabolismo , Aguas Residuales/química , Microalgas/metabolismo , Eliminación de Residuos Líquidos/métodos , Nitrógeno/metabolismo
2.
Bioresour Technol ; 299: 122565, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31865150

RESUMEN

The potential for microbial protein production in the mixture of yellow wine lees and rice soaking wastewater was examined. Strong symbiotic effect was observed in fermentation with yeast-fungus mixed culture of Candida utilis and Geochichum candidum at a ratio of 1:1 (v/v). The maximum specific biomass yield of 4.91 ± 0.48 g final biomass/g initial biomass with a protein content of 68.5 ± 1.0% was achieved at inoculum-to-substrate ratio of 10% (v/v) and aeration rate of 1.0 volumeair/volumeliquid/min. The essential amino acids contents of the derived protein were comparable to commercial protein sources with high amounts of methionine (2.87%, based on total protein). The reduction in soluble chemical oxygen demand of 79.4 ± 0.4% was mainly due to uptake of carbohydrate, soluble protein, volatile fatty acids, amino acids, etc. The application of mixed yeast-fungus technology provides a new opportunity for microbial protein production from these low-value organic residue streams.


Asunto(s)
Vino , Análisis de la Demanda Biológica de Oxígeno , Biomasa , Fermentación , Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA