Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurosci Conscious ; 2024(1): niae025, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881630

RESUMEN

Modern medicine has been shaken by the surge of psychedelic science that proposes a new approach to mitigate mental disorders, such as depression and post-traumatic stress disorder. Clinical trials to investigate whether psychedelic substances can treat psychiatric conditions are now underway, yet less discussion gravitates around their use in neurological disorders due to brain injury. One suggested implementation of brain-complexity enhancing psychedelics is to treat people with post-comatose disorders of consciousness (DoC). In this article, we discuss the rationale of this endeavour, examining possible outcomes of such experiments by postulating the existence of an optimal level of complexity. We consider the possible counterintuitive effects of both psychedelics and DoC on the functional connectivity of the default mode network and its possible impact on selfhood. We also elaborate on the role of computational modelling in providing complementary information to experimental studies, both contributing to our understanding of the treatment mechanisms and providing a path towards personalized medicine. Finally, we update the discourse surrounding the ethical considerations, encompassing clinical and scientific values.

2.
Neuroinformatics ; 22(1): 75-87, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37981636

RESUMEN

To simulate whole brain dynamics with only a few equations, biophysical, mesoscopic models of local neuron populations can be connected using empirical tractography data. The development of mesoscopic mean-field models of neural populations, in particular, the Adaptive Exponential (AdEx mean-field model), has successfully summarized neuron-scale phenomena leading to the emergence of global brain dynamics associated with conscious (asynchronous and rapid dynamics) and unconscious (synchronized slow-waves, with Up-and-Down state dynamics) brain states, based on biophysical mechanisms operating at cellular scales (e.g. neuromodulatory regulation of spike-frequency adaptation during sleep-wake cycles or anesthetics). Using the Virtual Brain (TVB) environment to connect mean-field AdEx models, we have previously simulated the general properties of brain states, playing on spike-frequency adaptation, but have not yet performed detailed analyses of other parameters possibly also regulating transitions in brain-scale dynamics between different brain states. We performed a dense grid parameter exploration of the TVB-AdEx model, making use of High Performance Computing. We report a remarkable robustness of the effect of adaptation to induce synchronized slow-wave activity. Moreover, the occurrence of slow waves is often paralleled with a closer relation between functional and structural connectivity. We find that hyperpolarization can also generate unconscious-like synchronized Up and Down states, which may be a mechanism underlying the action of anesthetics. We conclude that the TVB-AdEx model reveals large-scale properties identified experimentally in sleep and anesthesia.


Asunto(s)
Anestésicos , Encéfalo , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Neuronas/fisiología , Cabeza , Metodologías Computacionales , Modelos Neurológicos
3.
J Neurosurg ; 140(1): 218-230, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37382356

RESUMEN

A major goal of modern neurosurgery is the personalization of treatment to optimize or predict individual outcomes. One strategy in this regard has been to create whole-brain models of individual patients. Whole-brain modeling is a subfield of computational neuroscience that focuses on simulations of large-scale neural activity patterns across distributed brain networks. Recent advances allow for the personalization of these models by incorporating distinct connectivity architecture obtained from noninvasive neuroimaging of individual patients. Local dynamics of each brain region are simulated with neural mass models and subsequently coupled together, considering the subject's empirical structural connectome. The parameters of the model can be optimized by comparing model-generated and empirical data. The resulting personalized whole-brain models have translational potential in neurosurgery, allowing investigators to simulate the effects of virtual therapies (such as resections or brain stimulations), assess the effect of brain pathology on network dynamics, or discern epileptic networks and predict seizure propagation in silico. The information gained from these simulations can be used as clinical decision support, guiding patient-specific treatment plans. Here the authors provide an overview of the rapidly advancing field of whole-brain modeling and review the literature on neurosurgical applications of this technology.


Asunto(s)
Conectoma , Epilepsia , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Encéfalo/patología , Simulación por Computador , Conectoma/métodos , Neuroimagen , Red Nerviosa
4.
Alzheimers Res Ther ; 15(1): 210, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053164

RESUMEN

BACKGROUND: Alzheimer's disease is a neurodegenerative condition associated with the accumulation of two misfolded proteins, amyloid-beta (A[Formula: see text]) and tau. We study their effect on neuronal activity, with the aim of assessing their individual and combined impact. METHODS: We use a whole-brain dynamic model to find the optimal parameters that best describe the effects of A[Formula: see text] and tau on the excitation-inhibition balance of the local nodes. RESULTS: We found a clear dominance of A[Formula: see text] over tau in the early disease stages (MCI), while tau dominates over A[Formula: see text] in the latest stages (AD). We identify crucial roles for A[Formula: see text] and tau in complex neuronal dynamics and demonstrate the viability of using regional distributions to define models of large-scale brain function in AD. CONCLUSIONS: Our study provides further insight into the dynamics and complex interplay between these two proteins, opening the path for further investigations on biomarkers and candidate therapeutic targets in-silico.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Proteínas tau/metabolismo , Biomarcadores/metabolismo
5.
Front Hum Neurosci ; 17: 1275387, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886692

RESUMEN

[This corrects the article DOI: 10.3389/fnhum.2022.958706.].

6.
Netw Neurosci ; 7(2): 632-660, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397876

RESUMEN

Large variability exists across brain regions in health and disease, considering their cellular and molecular composition, connectivity, and function. Large-scale whole-brain models comprising coupled brain regions provide insights into the underlying dynamics that shape complex patterns of spontaneous brain activity. In particular, biophysically grounded mean-field whole-brain models in the asynchronous regime were used to demonstrate the dynamical consequences of including regional variability. Nevertheless, the role of heterogeneities when brain dynamics are supported by synchronous oscillating state, which is a ubiquitous phenomenon in brain, remains poorly understood. Here, we implemented two models capable of presenting oscillatory behavior with different levels of abstraction: a phenomenological Stuart-Landau model and an exact mean-field model. The fit of these models informed by structural- to functional-weighted MRI signal (T1w/T2w) allowed us to explore the implication of the inclusion of heterogeneities for modeling resting-state fMRI recordings from healthy participants. We found that disease-specific regional functional heterogeneity imposed dynamical consequences within the oscillatory regime in fMRI recordings from neurodegeneration with specific impacts on brain atrophy/structure (Alzheimer's patients). Overall, we found that models with oscillations perform better when structural and functional regional heterogeneities are considered, showing that phenomenological and biophysical models behave similarly at the brink of the Hopf bifurcation.

7.
Neuroimage Clin ; 36: 103262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451365

RESUMEN

Functional magnetic resonance imaging (fMRI) captures information on brain function beyond the anatomical alterations that are traditionally visually examined by neuroradiologists. However, the fMRI signals are complex in addition to being noisy, so fMRI still faces limitations for clinical applications. Here we review methods that have been proposed as potential solutions so far, namely statistical, biophysical and decoding models, with their strengths and weaknesses. We especially evaluate the ability of these models to directly predict clinical variables from their parameters (predictability) and to extract clinically relevant information regarding biological mechanisms and relevant features for classification and prediction (interpretability). We then provide guidelines for useful applications and pitfalls of such fMRI-based models in a clinical research context, looking beyond the current state of the art. In particular, we argue that the clinical relevance of fMRI calls for a new generation of models for fMRI data, which combine the strengths of both biophysical and decoding models. This leads to reliable and biologically meaningful model parameters, which thus fulfills the need for simultaneous interpretability and predictability. In our view, this synergy is fundamental for the discovery of new pharmacological and interventional targets, as well as the use of models as biomarkers in neurology and psychiatry.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neuroimagen Funcional , Neuroimagen
8.
Front Hum Neurosci ; 16: 958706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211126

RESUMEN

The past two decades have seen an explosion in the methods and directions of neuroscience research. Along with many others, complexity research has rapidly gained traction as both an independent research field and a valuable subdiscipline in computational neuroscience. In the past decade alone, several studies have suggested that psychiatric disorders affect the spatiotemporal complexity of both global and region-specific brain activity (Liu et al., 2013; Adhikari et al., 2017; Li et al., 2018). However, many of these studies have not accounted for the distributed nature of cognition in either the global or regional complexity estimates, which may lead to erroneous interpretations of both global and region-specific entropy estimates. To alleviate this concern, we propose a novel method for estimating complexity. This method relies upon projecting dynamic functional connectivity into a low-dimensional space which captures the distributed nature of brain activity. Dimension-specific entropy may be estimated within this space, which in turn allows for a rapid estimate of global signal complexity. Testing this method on a recently acquired obsessive-compulsive disorder dataset reveals substantial increases in the complexity of both global and dimension-specific activity versus healthy controls, suggesting that obsessive-compulsive patients may experience increased disorder in cognition. To probe the potential causes of this alteration, we estimate subject-level effective connectivity via a Hopf oscillator-based model dynamic model, the results of which suggest that obsessive-compulsive patients may experience abnormally high connectivity across a broad network in the cortex. These findings are broadly in line with results from previous studies, suggesting that this method is both robust and sensitive to group-level complexity alterations.

9.
Neuroimage Clin ; 36: 103233, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36272340

RESUMEN

Understanding the effect of focal lesions (stroke) on brain structure-function traditionally relies on behavioral analyses and correlation with neuroimaging data. Here we use structural disconnection maps from individual lesions to derive a causal mechanistic generative whole-brain model able to explain both functional connectivity alterations and behavioral deficits induced by stroke. As compared to other models that use only the local lesion information, the similarity to the empirical fMRI connectivity increases when the widespread structural disconnection information is considered. The presented model classifies behavioral impairment severity with higher accuracy than other types of information (e.g.: functional connectivity). We assessed topological measures that characterize the functional effects of damage. With the obtained results, we were able to understand how network dynamics change emerge, in a nontrivial way, after a stroke injury of the underlying complex brain system. This type of modeling, including structural disconnection information, helps to deepen our understanding of the underlying mechanisms of stroke lesions.


Asunto(s)
Conectoma , Accidente Cerebrovascular , Humanos , Conectoma/métodos , Red Nerviosa/diagnóstico por imagen , Encéfalo , Neuroimagen , Imagen por Resonancia Magnética
10.
Hum Brain Mapp ; 43(17): 5326-5339, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35808927

RESUMEN

Major depressive disorder (MDD) as a dysfunction of neural circuits and brain networks has been established in modern neuroimaging sciences. However, the brain state transitions between MDD and health through external stimulation remain unclear, which limits translation to clinical contexts and demonstrable clinical utility. We propose a framework of the large-scale whole-brain network model for MDD linking the underlying anatomical connectivity with functional dynamics obtained from diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI). Then, we further explored the optimal brain regions to promote the transition of brain states between MDD and health through external stimulation of the model. Based on the whole-brain model successfully fitting the brain state space in MDD and the health, we demonstrated that the transition from MDD to health is achieved by the excitatory activation of the limbic system and from health to MDD by the inhibitory stimulation of the reward circuit. Our finding provides novel biophysical evidence for the neural mechanism of MDD and its recovery and allows the discovery of new stimulation targets for MDD recovery.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Imagen de Difusión Tensora/métodos , Encéfalo , Imagen por Resonancia Magnética/métodos , Neuroimagen , Mapeo Encefálico
11.
Front Comput Neurosci ; 16: 866517, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694610

RESUMEN

Computational neuroscience has come a long way from its humble origins in the pioneering work of Hodgkin and Huxley. Contemporary computational models of the brain span multiple spatiotemporal scales, from single neuronal compartments to models of social cognition. Each spatial scale comes with its own unique set of promises and challenges. Here, we review models of large-scale neural communication facilitated by white matter tracts, also known as whole-brain models (WBMs). Whole-brain approaches employ inputs from neuroimaging data and insights from graph theory and non-linear systems theory to model brain-wide dynamics. Over the years, WBM models have shown promise in providing predictive insights into various facets of neuropathologies such as Alzheimer's disease, Schizophrenia, Epilepsy, Traumatic brain injury, while also offering mechanistic insights into large-scale cortical communication. First, we briefly trace the history of WBMs, leading up to the state-of-the-art. We discuss various methodological considerations for implementing a whole-brain modeling pipeline, such as choice of node dynamics, model fitting and appropriate parcellations. We then demonstrate the applicability of WBMs toward understanding various neuropathologies. We conclude by discussing ways of augmenting the biological and clinical validity of whole-brain models.

12.
Neuroimage ; 257: 119321, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35580807

RESUMEN

Dynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework. Nowadays, they are used to investigate the dynamical regimes of the brain and how these relate to behavioral, clinical and demographic traits. However, there is no comprehensive investigation on how reliable and subject specific the modeling results are given the variability of the empirical FC. In this study, we show that the parameters of these models can be fitted with a "poor" to "good" reliability depending on the exact implementation of the modeling paradigm. We find, as a general rule of thumb, that enhanced model personalization leads to increasingly reliable model parameters. In addition, we observe no clear effect of the model complexity evaluated by separately sampling results for linear, phase oscillator and neural mass network models. In fact, the most complex neural mass model often yields modeling results with "poor" reliability comparable to the simple linear model, but demonstrates an enhanced subject specificity of the model similarity maps. Subsequently, we show that the FC simulated by these models can outperform the empirical FC in terms of both reliability and subject specificity. For the structure-function relationship, simulated FC of individual subjects may be identified from the correlations with the empirical SC with an accuracy up to 70%, but not vice versa for non-linear models. We sample all our findings for 8 distinct brain parcellations and 6 modeling conditions and show that the parcellation-induced effect is much more pronounced for the modeling results than for the empirical data. In sum, this study provides an exploratory account on the reliability and subject specificity of dynamical whole-brain models and may be relevant for their further development and application. In particular, our findings suggest that the application of the dynamical whole-brain modeling should be tightly connected with an estimate of the reliability of the results.


Asunto(s)
Encéfalo , Conectoma , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Redes Neurales de la Computación , Reproducibilidad de los Resultados
13.
Front Comput Neurosci ; 15: 687075, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335217

RESUMEN

The structural connectivity of human brain allows the coexistence of segregated and integrated states of activity. Neuromodulatory systems facilitate the transition between these functional states and recent computational studies have shown how an interplay between the noradrenergic and cholinergic systems define these transitions. However, there is still much to be known about the interaction between the structural connectivity and the effect of neuromodulation, and to what extent the connectome facilitates dynamic transitions. In this work, we use a whole brain model, based on the Jasen and Rit equations plus a human structural connectivity matrix, to find out which structural features of the human connectome network define the optimal neuromodulatory effects. We simulated the effect of the noradrenergic system as changes in filter gain, and studied its effects related to the global-, local-, and meso-scale features of the connectome. At the global-scale, we found that the ability of the network of transiting through a variety of dynamical states is disrupted by randomization of the connection weights. By simulating neuromodulation of partial subsets of nodes, we found that transitions between integrated and segregated states are more easily achieved when targeting nodes with greater connection strengths-local feature-or belonging to the rich club-meso-scale feature. Overall, our findings clarify how the network spatial features, at different levels, interact with neuromodulation to facilitate the switching between segregated and integrated brain states and to sustain a richer brain dynamics.

14.
Neuroimage ; 236: 118201, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34033913

RESUMEN

Modern approaches to investigate complex brain dynamics suggest to represent the brain as a functional network of brain regions defined by a brain atlas, while edges represent the structural or functional connectivity among them. This approach is also utilized for mathematical modeling of the resting-state brain dynamics, where the applied brain parcellation plays an essential role in deriving the model network and governing the modeling results. There is however no consensus and empirical evidence on how a given brain atlas affects the model outcome, and the choice of parcellation is still rather arbitrary. Accordingly, we explore the impact of brain parcellation on inter-subject and inter-parcellation variability of model fitting to empirical data. Our objective is to provide a comprehensive empirical evidence of potential influences of parcellation choice on resting-state whole-brain dynamical modeling. We show that brain atlases strongly influence the quality of model validation and propose several variables calculated from empirical data to account for the observed variability. A few classes of such data variables can be distinguished depending on their inter-subject and inter-parcellation explanatory power.


Asunto(s)
Atlas como Asunto , Encéfalo/fisiología , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Modelos Teóricos , Encéfalo/diagnóstico por imagen , Simulación por Computador , Humanos , Reproducibilidad de los Resultados
15.
Front Comput Neurosci ; 15: 800101, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095451

RESUMEN

During slow-wave sleep, the brain is in a self-organized regime in which slow oscillations (SOs) between up- and down-states travel across the cortex. While an isolated piece of cortex can produce SOs, the brain-wide propagation of these oscillations are thought to be mediated by the long-range axonal connections. We address the mechanism of how SOs emerge and recruit large parts of the brain using a whole-brain model constructed from empirical connectivity data in which SOs are induced independently in each brain area by a local adaptation mechanism. Using an evolutionary optimization approach, good fits to human resting-state fMRI data and sleep EEG data are found at values of the adaptation strength close to a bifurcation where the model produces a balance between local and global SOs with realistic spatiotemporal statistics. Local oscillations are more frequent, last shorter, and have a lower amplitude. Global oscillations spread as waves of silence across the undirected brain graph, traveling from anterior to posterior regions. These traveling waves are caused by heterogeneities in the brain network in which the connection strengths between brain areas determine which areas transition to a down-state first, and thus initiate traveling waves across the cortex. Our results demonstrate the utility of whole-brain models for explaining the origin of large-scale cortical oscillations and how they are shaped by the connectome.

16.
Brain Connect ; 7(9): 541-557, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28875718

RESUMEN

A popular way to analyze resting-state electroencephalography (EEG) and magneto encephalography (MEG) data is to treat them as a functional network in which sensors are identified with nodes and the interaction between channel time series and the network connections. Although conceptually appealing, the network-theoretical approach to sensor-level EEG and MEG data is challenged by the fact that EEG and MEG time series are mixtures of source activity. It is, therefore, of interest to assess the relationship between functional networks of source activity and the ensuing sensor-level networks. Since these topological features are of high interest in experimental studies, we address the question of to what extent the network topology can be reconstructed from sensor-level functional connectivity (FC) measures in case of MEG data. Simple simulations that consider only a small number of regions do not allow to assess network properties; therefore, we use a diffusion magnetic resonance imaging-constrained whole-brain computational model of resting-state activity. Our motivation lies behind the fact that still many contributions found in the literature perform network analysis at sensor level, and we aim at showing the discrepancies between source- and sensor-level network topologies by using realistic simulations of resting-state cortical activity. Our main findings are that the effect of field spread on network topology depends on the type of interaction (instantaneous or lagged) and leads to an underestimation of lagged FC at sensor level due to instantaneous mixing of cortical signals, instantaneous interaction is more sensitive to field spread than lagged interaction, and discrepancies are reduced when using planar gradiometers rather than axial gradiometers. We, therefore, recommend using lagged interaction measures on planar gradiometer data when investigating network properties of resting-state sensor-level MEG data.


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiología , Magnetoencefalografía , Modelos Neurológicos , Vías Nerviosas/fisiología , Descanso/fisiología , Encéfalo/diagnóstico por imagen , Simulación por Computador , Electroencefalografía , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA