Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Prep Biochem Biotechnol ; 53(5): 565-571, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36047960

RESUMEN

Astaxanthin is one of the most attractive carotenoid in the cosmetic, food, pharmaceutical, and aquaculture industries due to its strong bioactive properties. Among the various sources, several algae species are considered as rich sources of astaxanthin. Downstream processing of algae involves the majority of the total processing costs. Thus, elimination of high energy involved steps is imperative to achieve cost-effective scale in industry. This study aimed to determine operation conditions for astaxanthin extraction from wet Haematococcus pluvialis using microwave-assisted extraction. The isolated astaxanthin extract was evaluated for cytotoxicity on human lung cancer cells. The microwave-assisted extraction process at 75 °C under the power of 700 Watt for 7 min gave the highest astaxanthin yield (12.24 ± 0.54 mg astaxanthin/g wet cell weight). Based on MTT cell viability and Hoechst 33342 nuclear staining assays on A549 lung cancer cells, astaxanthin inhibited cell growth in dose- and time-dependent manners, where IC50 value was determined as 111.8 ± 14.8 µg/mL and apoptotic bodies were observed along with positive control group at 72 hr. These results showed that the treatment with astaxanthin extracted from wet H. pluvialis by microwave-assisted extraction exhibited anti-cancer activity on lung cancer cells indicating a newly potential to be utilized in industry.


Asunto(s)
Neoplasias Pulmonares , Microondas , Humanos , Desarrollo Sostenible , Extractos Vegetales
2.
Bioresour Technol ; 346: 126597, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34990860

RESUMEN

Novel cell-disruption combinations (autolytic incubation and hypotonic osmotic shock combined with HPH or pH12) were used to investigate the fundamental mass transfer of lipids and proteins from Nannochloropsis slurries (140 mg biomass/g slurry). Since neutral lipids exist as cytosolic globules, their mass transfer was directly dependent on disintegration of cell walls. Complete recovery was obtained with complete physical disruption. HPH combinations exerted more physical disruption and led to higher yields than pH12. In contrast, proteins exist as both cytosolic water-soluble fractions and cell-wall/membrane structural fractions and have a complex extraction behaviour. Mass transfer of cytosolic proteins was dependent on cell-wall disintegration, while that of structural proteins was governed by cell-wall disintegration and severance of protein linkage from the wall/membrane. HPH combinations exerted only physical disruption and were limited to releasing soluble proteins. pH12 combinations hydrolysed chemical linkages in addition to exerting physical disruption, releasing both soluble and structural proteins.


Asunto(s)
Microalgas , Estramenopilos , Biomasa , Lípidos , Agua
3.
Molecules ; 26(3)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530628

RESUMEN

One of the main goals of Mankind is to ensure food system sustainability-including management of land, soil, water, and biodiversity. Microalgae accordingly appear as an innovative and scalable alternative source in view of the richness of their chemical profiles. In what concerns lipids in particular, microalgae can synthesize and accumulate significant amounts of fatty acids, a great fraction of which are polyunsaturated; this makes them excellent candidates within the framework of production and exploitation of lipids by various industrial and health sectors, either as bulk products or fine chemicals. Conventional lipid extraction methodologies require previous dehydration of microalgal biomass, which hampers economic feasibility due to the high energy demands thereof. Therefore, extraction of lipids directly from wet biomass would be a plus in this endeavor. Supporting processes and methodologies are still limited, and most approaches are empirical in nature-so a deeper mechanistic elucidation is a must, in order to facilitate rational optimization of the extraction processes. Besides circumventing the current high energy demands by dehydration, an ideal extraction method should be selective, sustainable, efficient, harmless, and feasible for upscale to industrial level. This review presents and discusses several pretreatments incurred in lipid extraction from wet microalga biomass, namely recent developments and integrated processes. Unfortunately, most such developments have been proven at bench-scale only-so demonstration in large facilities is still needed to confirm whether they can turn into competitive alternatives.


Asunto(s)
Microalgas/química , Microalgas/crecimiento & desarrollo , Aceites/aislamiento & purificación , Biocombustibles , Biomasa , Secuestro de Carbono , Purificación del Agua
4.
J Biosci Bioeng ; 130(4): 397-401, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32586661

RESUMEN

In situ transesterification of oleaginous microbes with short chain alcohol has been developed as a renewable process for the production of biodiesel. Dry biomass is often a requisite for the process to avoid the adverse effect of water on the productivity. As a consequence, large amount of energy consumption is required for prior biomass drying. In this study, the wet biomass of Rhodotorula glutinis, an oleaginous yeast, was used directly in in situ transesterification without biomass drying. The reaction conditions were optimized for the production of fatty acid methyl esters (FAME) and the effects of adding different surfactants were also studied. The highest FAME yield of 110% was achieved with a methanol loading of 1:100 at 90°C for 8 h as catalyzed by 0.36 M H2SO4, and the FAME content was 97%, which meets the 96.5% specified in both European biodiesel standards and Taiwanese biodiesel standards. The addition of 50 mM 3-(N,N-dimethylmyristylammonio)propanesulfonate (3-DMAPS, a zwitterionic surfactant) improved the FAME yield from 69% to 83%, which was obtained with a low methanol loading of 1:10 at 90°C for 10 h. Hence, the production of FAME with wet biomass under optimized reaction conditions was as effective as that with the dry form. This clearly indicates that using wet R. glutinis as the feedstock is feasible for the production of biodiesel by in situ transesterification.


Asunto(s)
Biomasa , Rhodotorula/química , Tensoactivos/química , Biocombustibles , Catálisis , Esterificación , Ácidos Grasos/química , Metanol/química , Agua/química
5.
Bioprocess Biosyst Eng ; 43(5): 785-796, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31894389

RESUMEN

In recent years, there has been increasing consumer interest in carotenoids, particularly of marine sustainable origin with applications in the food, cosmeceutical, nutritional supplement and pharmaceutical industries. For instance, microalgae belonging to the genus Tetraselmis are known for their biotechnologically relevant carotenoid profile. The recently isolated marine microalgal strain Tetraselmis sp. CTP4 is a fast-growing, robust industrial strain, which has successfully been produced in 100-m3 photobioreactors. However, there are no reports on total carotenoid contents from this strain belonging to T. striata/convolutae clade. Although there are several reports on extraction methods targeting chlorophytes, extraction depends on the strength of cell coverings, solvent polarity and the nature of the targeted carotenoids. Therefore, this article evaluates different extraction methods targeting Tetraselmis sp. CTP4, a strain known to contain a mechanically resistant theca. Here, we propose a factorial experimental design to compare extraction of total carotenoids from wet and freeze-dried microalgal biomass using four different solvents (acetone, ethanol, methanol or tetrahydrofuran) in combination with two types of mechanical cell disruption (glass beads or dispersion). The extraction efficiency of the methods was assessed by pigment contents and profiles present in the extracts. Extraction of wet biomass by means of glass bead-assisted cell disruption using tetrahydrofuran yielded the highest amounts of lutein and ß-carotene (622 ± 40 and 618 ± 32 µg g-1 DW, respectively). Although acetone was slightly less efficient than tetrahydrofuran, it is preferable due to its lower costs and toxicity.


Asunto(s)
Chlorophyta/química , Luteína , Microalgas/química , beta Caroteno , Luteína/química , Luteína/aislamiento & purificación , Microalgas/aislamiento & purificación , beta Caroteno/química , beta Caroteno/aislamiento & purificación
6.
Bioresour Technol ; 291: 121834, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31371157

RESUMEN

In present study, lipids were extracted from unbroken microalga Chlorella vulgaris with high water content (50% microalgal solution) through three-phase partitioning (TPP). The method was found to extract around 15.9% of total lipid transformable to methyl esters (LTMEs) from unbroken microalgal cells which is two times of Bligh and Dyer method. We investigated the effects of various parameters on TPP performance and were optimised through response surface methodology. The results indicated that incubation duration, temperature and extraction time were positively correlated with LTME extraction efficiency. The optimum temperature was 60 °C, incubation duration was 120 min, extraction time was 60 min, ratio of solvent to DKP was 1:1. The FAME yield was calculated as 12.05% and major fatty acids together accounted for 71.33% which indicated the great potential of the proposed lipid extraction procedure for microalga-based biodiesel production.


Asunto(s)
Biocombustibles , Biomasa , Chlorella vulgaris/metabolismo , Lípidos/aislamiento & purificación , Microalgas/metabolismo , Ácidos Grasos/metabolismo , Lípidos/biosíntesis , Solventes , Temperatura , Agua
7.
Bioresour Technol ; 256: 515-528, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29472122

RESUMEN

With increasing global population and depleting resources, there is an apparent demand for radical unprecedented innovation to satisfy the basal needs of lives. Hence, non-conventional renewable energy resources like biodiesel have been worked out in past few decades. Biofuel (e.g. Biodiesel) serves to be the most sustainable answer to solve "food vs. fuel crisis". In biorefinery process, lipid extraction from oleaginous microbial lipids is an integral part as it facilitates the release of fatty acids. Direct lipid extraction from wet cell-biomass is favorable in comparison to dry-cell biomass because it eliminates the application of expensive dehydration. However, this process is not commercialized yet, instead, it requires intensive research and development in order to establish robust approaches for lipid extraction that can be practically applied on an industrial scale. This review aims for the critical presentation on cell disruption, lipid recovery and purification to support extraction from wet cell-biomass for an efficient transesterification.


Asunto(s)
Biocombustibles , Lípidos , Biomasa , Esterificación , Ácidos Grasos , Microalgas
8.
Environ Sci Pollut Res Int ; 24(18): 15299-15307, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28502047

RESUMEN

Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass. Graphical abstract: Lipid extraction from wet microalgal biomass and biorefianry approach.


Asunto(s)
Biocombustibles , Lípidos/aislamiento & purificación , Microalgas , Solventes , Biomasa
9.
Bioresour Technol ; 201: 304-11, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26687490

RESUMEN

In this research, organic solvent composed of hexane and methanol was used for lipid extraction from dry and wet biomass of Chlorella vulgaris. The results indicated that lipid and fatty acid extraction yield was decreased by increasing the moisture content of biomass. However, the maximum extraction efficiency was attained by applying equivolume mixture of hexane and methanol for both dry and wet biomass. Thermodynamic modeling was employed to estimate the effect of hexane/methanol ratio and moisture content on fatty acid extraction yield. Hansen solubility parameter was used in adjusting the interaction parameters of the model, which led to decrease the number of tuning parameters from 6 to 2. The results indicated that the model can accurately estimate the fatty acid recovery with average absolute deviation percentage (AAD%) of 13.90% and 15.00% for the two cases of using 6 and 2 adjustable parameters, respectively.


Asunto(s)
Chlorella vulgaris/metabolismo , Hexanos/química , Humedad , Lípidos/aislamiento & purificación , Metanol/química , Modelos Teóricos , Solventes/química , Biomasa , Ácidos Grasos/aislamiento & purificación , Liofilización , Termodinámica
10.
Bioresour Technol ; 193: 90-6, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26117240

RESUMEN

In this research, direct conversion of wet algal biomass into biodiesel using supercritical methanol was studied. In this process, microalgal lipids simultaneously was extracted and converted to biodiesel under high pressure and temperature conditions without using any catalyst. Several experiments have been performed to optimize the methanol amount and it has been revealed that the best performance was achieved by using methanol/wet biomass ratio of 8:1. The effect of using various co-solvents in increasing the efficiency of the supercritical process was investigated. It has been shown that hexane was the most effective co-solvent and its optimal ratio respect to wet biomass was 6:1. The results indicated that compare to conventional extraction plus transesterification reaction, fatty acid methyl esters (FAMEs) yield was slightly higher in the direct conversion process. Moreover, increasing the moisture content up to 80% has no significant effect on reducing the performance of this process.


Asunto(s)
Esterificación/fisiología , Microalgas/química , Solventes/química , Biocombustibles , Biomasa , Catálisis , Ácidos Grasos/química , Hexanos/química , Lípidos/química , Metanol/química , Éteres Metílicos/química , Temperatura , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA