Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Ecol Evol ; 24(1): 119, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277710

RESUMEN

BACKGROUND: Volvocales in green algae have evolved by multicellularity of Chlamydomonas-like unicellular ancestor. Those with various cell numbers exist, such as unicellular Chlamydomonas, four-celled Tetrabaena, and Volvox species with different cell numbers (~1,000, ~5,000, and ~10,000). Each cell of these organisms shares two cilia and an eyespot, which are used for swimming and photosensing. They are all freshwater microalgae but inhabit different fluid environments: unicellular species live in low Reynolds-number (Re) environments where viscous forces dominate, whereas multicellular species live in relatively higher Re where inertial forces become non-negligible. Despite significant changes in the physical environment, during the evolution of multicellularity, they maintained photobehaviors (i.e., photoshock and phototactic responses), which allows them to survive under changing light conditions. RESULTS: In this study, we utilized high-speed imaging to observe flash-induced changes in the ciliary beating manner of 27 Volvocales strains. We classified flash-induced ciliary responses in Volvocales into four patterns: "1: temporal waveform conversion", "2: no obvious response", "3: pause in ciliary beating", and "4: temporal changes in ciliary beating directions". We found that which species exhibit which pattern depends on Re, which is associated with the individual size of each species rather than phylogenetic relationships. CONCLUSIONS: These results suggest that only organisms that acquired different patterns of ciliary responses survived the evolutionary transition to multicellularity with a greater number of cells while maintaining photobehaviors. This study highlights the significance of the Re as a selection pressure in evolution and offers insights for designing propulsion systems in biomimetic micromachines.


Asunto(s)
Evolución Biológica , Cilios , Cilios/fisiología , Chlorophyta/fisiología , Chlorophyta/genética , Volvox/genética , Volvox/fisiología , Luz
2.
Protist ; 173(2): 125858, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35220204

RESUMEN

Unicellular green biflagellates of the order Volvocales (Chlorophyceae, Chlorophyta) are common inhabitants of various types of habitats, and can also form peculiar interspecific relationships. Most of their morphological diversity has historically been assigned to the two prominent genera Chlamydomonas and Chloromonas. Ongoing reclassification of these algae, aided by molecular phylogenetics, has resulted in numerous newly proposed genera, but there are certainly brand-new taxa awaiting recognition. In this study, based on morphological and ultrastructural observations together with sequence data of the nuclear 18S and ITS2 rDNA and the plastid rbcL gene, we describe Adglutina synurophila gen. et sp. nov., a volvocalean biflagellate isolated from colonies of the golden-brown alga Synura petersenii (Chrysophyceae). Phylogenetic analyses placed Adglutina in the phylogroup Moewusinia as a sister lineage to the acidophilic "Chlamydomonas" species. It is characterised by having oval to broadly ellipsoidal cells with a low keel-shaped papilla and a cup-shaped chloroplast lacking a pyrenoid, but possessing a lateral eyespot of a variable position. The unique set of features, together with its Synura-loving nature, anchor Adglutina as a well distinguishable phylogenetic lineage within the Moewusinia. The novel alga has a widespread distribution; it has been found in three European countries to date.


Asunto(s)
Chlamydomonas , Chlorophyceae , Chlorophyta , Microalgas , Estramenopilos , Chlamydomonas/genética , Chlorophyceae/genética , ADN Ribosómico/genética , Filogenia , Estramenopilos/genética
3.
BMC Biol ; 15(1): 111, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29179763

RESUMEN

BACKGROUND: One of evolution's most important achievements is the development and radiation of multicellular organisms with different types of cells. Complex multicellularity has evolved several times in eukaryotes; yet, in most lineages, an investigation of its molecular background is considerably challenging since the transition occurred too far in the past and, in addition, these lineages evolved a large number of cell types. However, for volvocine green algae, such as Volvox carteri, multicellularity is a relatively recent innovation. Furthermore, V. carteri shows a complete division of labor between only two cell types - small, flagellated somatic cells and large, immotile reproductive cells. Thus, V. carteri provides a unique opportunity to study multicellularity and cellular differentiation at the molecular level. RESULTS: This study provides a whole transcriptome RNA-Seq analysis of separated cell types of the multicellular green alga V. carteri f. nagariensis to reveal cell type-specific components and functions. To this end, 246 million quality filtered reads were mapped to the genome and valid expression data were obtained for 93% of the 14,247 gene loci. In the subsequent search for protein domains with assigned molecular function, we identified 9435 previously classified domains in 44% of all gene loci. Furthermore, in 43% of all gene loci we identified 15,254 domains that are involved in biological processes. All identified domains were investigated regarding cell type-specific expression. Moreover, we provide further insight into the expression pattern of previously described gene families (e.g., pherophorin, extracellular matrix metalloprotease, and VARL families). Our results demonstrate an extensive compartmentalization of the transcriptome between cell types: More than half of all genes show a clear difference in expression between somatic and reproductive cells. CONCLUSIONS: This study constitutes the first transcriptome-wide RNA-Seq analysis of separated cell types of V. carteri focusing on gene expression. The high degree of differential expression indicates a strong differentiation of cell types despite the fact that V. carteri diverged relatively recently from its unicellular relatives. Our expression dataset and the bioinformatic analyses provide the opportunity to further investigate and understand the mechanisms of cell type-specific expression and its transcriptional regulation.


Asunto(s)
Evolución Biológica , Genoma , Transcriptoma , Volvox/genética , Biología Computacional , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN
4.
J Phycol ; 53(1): 108-117, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27767210

RESUMEN

New strains of a wall-less unicellular volvocalean flagellate were isolated from a freshwater environment in Japan. Observations of the alga, described here as Hapalochloris nozakii Nakada, gen. et sp. nov., were made using light, fluorescence, and electron microscopy. Each vegetative cell had two flagella, four contractile vacuoles, and a spirally furrowed cup-shaped chloroplast with an axial pyrenoid, and mitochondria located in the furrows. Based on the morphology, H. nozakii was distinguished from other known wall-less volvocalean flagellates. Under electron microscopy, fibrous material, instead of a cell wall and dense cortical microtubules, was observed outside and inside the cell membrane, respectively. Based on the phylogenetic analyses of 18S rRNA gene sequences, H. nozakii was found to be closely related to Asterococcus, Oogamochlamys, Rhysamphichloris, and "Dunaliella" lateralis and was separated from other known wall-less flagellate volvocaleans, indicating independent secondary loss of the cell wall in H. nozakii. In the combined 18S rRNA and chloroplast gene tree, H. nozakii was sister to Lobochlamys.


Asunto(s)
Filogenia , Volvocida/clasificación , Volvocida/ultraestructura , Proteínas Algáceas/genética , Secuencia de Aminoácidos , Japón , Microscopía Electrónica de Transmisión , Alineación de Secuencia , Especificidad de la Especie , Volvocida/citología , Volvocida/genética
5.
BMC Dev Biol ; 16(1): 35, 2016 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-27733125

RESUMEN

BACKGROUND: The multicellular volvocine alga Pleodorina is intermediate in organismal complexity between its unicellular relative, Chlamydomonas, and its multicellular relative, Volvox, which shows complete division of labor between different cell types. The volvocine green microalgae form a group of genera closely related to the genus Volvox within the order Volvocales (Chlorophyta). Embryos of multicellular volvocine algae consist of a cellular monolayer that, depending on the species, is either bowl-shaped or comprises a sphere. During embryogenesis, multicellular volvocine embryos turn their cellular monolayer right-side out to expose their flagella. This process is called 'inversion' and serves as simple model for epithelial folding in metazoa. While the development of spherical Volvox embryos has been the subject of detailed studies, the inversion process of bowl-shaped embryos is less well understood. Therefore, it has been unclear how the inversion of a sphere might have evolved from less complicated processes. RESULTS: In this study we characterized the inversion of initially bowl-shaped embryos of the 64- to 128-celled volvocine species Pleodorina californica. We focused on the movement patterns of the cell sheet, cell shape changes and changes in the localization of cytoplasmic bridges (CBs) connecting the cells. The development of living embryos was recorded using time-lapse light microscopy. Moreover, fixed and sectioned embryos throughout inversion and at successive stages of development were analyzed by light and transmission electron microscopy. We generated three-dimensional models of the identified cell shapes including the localization of CBs. CONCLUSIONS: In contrast to descriptions concerning volvocine embryos with lower cell numbers, the embryonic cells of P. californica undergo non-simultaneous and non-uniform cell shape changes. In P. californica, cell wedging in combination with a relocation of the CBs to the basal cell tips explains the curling of the cell sheet during inversion. In volvocine genera with lower organismal complexity, the cell shape changes and relocation of CBs are less pronounced in comparison to P. californica, while they are more pronounced in all members of the genus Volvox. This finding supports an increasing significance of the temporal and spatial regulation of cell shape changes and CB relocations with both increasing cell number and organismal complexity during evolution of differentiated multicellularity.


Asunto(s)
Chlorophyta/citología , Chlorophyta/embriología , Modelos Biológicos , Morfogénesis , Evolución Biológica , División Celular , Chlorophyta/ultraestructura , Microscopía Electrónica de Transmisión , Fotogrametría , Factores de Tiempo
6.
J Phycol ; 52(2): 283-304, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27037593

RESUMEN

Chlamydomonas (Cd.) is one of the largest but most polyphyletic genera of freshwater unicellular green algae. It consists of 400-600 morphological species and requires taxonomic revision. Toward reclassification, each morphologically defined classical subgenus (or subgroup) should be examined using culture strains. Chlamydomonas subg. Amphichloris is characterized by a central nucleus between two axial pyrenoids, however, the phylogenetic structure of this subgenus has yet to be examined using molecular data. Here, we examined 12 strains including six newly isolated strains, morphologically identified as Chlamydomonas subg. Amphichloris, using 18S rRNA gene phylogeny, light microscopy, and mitochondria fluorescent microscopy. Molecular phylogenetic analyses revealed three independent lineages of the subgenus, separated from the type species of Chlamydomonas, Cd. reinhardtii. These three lineages were further distinguished from each other by light and fluorescent microscopy-in particular by the morphology of the papillae, chloroplast surface, stigmata, and mitochondria-and are here assigned to three genera: Dangeardinia emend., Ixipapillifera gen. nov., and Rhysamphichloris gen. nov. Based on the molecular and morphological data, two to three species were recognized in each genus, including one new species, I. pauromitos. In addition, Cd. deasonii, which was previously assigned to subgroup "Pleiochloris," was included in the genus Ixipapillifera as I. deasonii comb. nov.


Asunto(s)
Chlamydomonas/clasificación , Filogenia , Secuencia de Bases , Teorema de Bayes , Chlamydomonas/citología , Chlamydomonas/genética , Microscopía Fluorescente , Mitocondrias/metabolismo , ARN Ribosómico 18S/genética
7.
J Phycol ; 48(3): 670-4, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27011083

RESUMEN

Gametes were induced separately in cultures of each mating type of the heterothallic, isogamous colonial volvocalean Gonium pectorale O. F. Müll. to examine the tubular mating structure (TMS) of both mating types plus and minus (plus and minus), referred to as "bilateral mating papillae." Addition of dibutyryl cyclic adenosine monophosphate (DcAMP or db-cAMP) and 3-isobutyl-1-methylxanthine (IBMX) to approximately 3-week-old cultures of each mating type induced immediate release of naked gametes from the cell walls. Both plus and minus gametes formed a TMS in the anterior region of the protoplasts. Accumulation of actin was visualized by antibody staining in the TMS of both mating types as occurs in the TMS (fertilization tubule) of the plus gametes of the unicellular volvocalean Chlamydomonas reinhardtii P. A. Dang. Induction of naked gametes with a TMS in each mating type will be useful for future cell biological and evolutionary studies of the isogametes of colonial volvocalean algae.

8.
J Phycol ; 47(3): 580-583, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27021987

RESUMEN

Steering their swimming direction toward the light is crucial for the viability of Volvox colonies, the larger members of the volvocine algae. While it is known that this phototactic steering is achieved by a difference in behavior of the flagella on the illuminated and shaded sides, conflicting reports suggest that this asymmetry arises either from a change in beating direction or a change in beating frequency. Here, we report direct observations of the flagellar behavior of various Volvox species with different phyletic origin in response to light intensity changes and thereby resolve this controversy: Volvox barberi W. Shaw from the section Volvox sensu Nozaki (2003) changes the direction of the flagellar beating plane, while species encompassed in the group Eudorina (Volvox carteri F. Stein, Volvox aureus Ehrenb., and Volvox tertius Art. Mey.) decrease the flagellar beating frequency, sometimes down to flagellar arrest.

9.
J Phycol ; 45(6): 1310-4, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27032588

RESUMEN

Gonium pectorale O. F. Müll. (Volvocales, Chlorophyta), a colonial 8- or 16-cellular alga, is phylogenetically important as an intermediate form between isogametic unicellular Chlamydomonas and oogamous Volvox. We identified the mating-type specific gene GpMTD1, from G. pectorale, the first homologue of Chlamydomonas reinhardtii MTD1 (CrMTD1). The GpMTD1 gene was found to be present only in the minus mating-type locus and was expressed specifically in the gametic phase as is the case for CrMTD1, suggested to participate in development of the minus gametes. This gene is useful as a probe in analyzing the bacterial artificial chromosome (BAC) library for resolving genomic structures of the mating-type loci in isogamous and oogamous colonial volvocaleans.

10.
J Phycol ; 45(2): 482-92, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27033826

RESUMEN

On the basis of LM, we isolated strains of two species of fusiform green flagellates that could be assigned to former Chlorogonium (Cg.) Ehrenb. One species, "Cg."heimii Bourr., lacked a pyrenoid in its vegetative cells and required organic compounds for growth. The other was similar to Cg. elongatum (P. A. Dang.) Francé and "Cg."acus Nayal, but with slightly smaller vegetative cells. Their molecular phylogeny was also studied based on combined 18S rRNA, RUBISCO LSU (rbcL), and P700 chl a-apoprotein A2 (psaB) gene sequences. Both species were separated from Chlorogonium emend., Gungnir Nakada and Rusalka Nakada, which were formerly assigned to Chlorogonium. They were accordingly assigned to new genera, Tabris Nakada gen. nov. and Hamakko (Hk.) Nakada gen. nov. as T. heimii (Bourr.) Nakada comb. nov. and Hk. caudatus Nakada sp. nov., respectively. Tabris is differentiated from other genera of fusiform green flagellates by its vegetative cells, which only have two apical contractile vacuoles and lack a pyrenoid in the chloroplast. Hamakko, on the other hand, is distinguishable by the fact that its pyrenoids in vegetative cells are penetrated by flattened thylakoid lamellae.

11.
J Phycol ; 44(6): 1395-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27039854

RESUMEN

Volvox barberi W. Shaw is a volvocalean green alga composed of biflagellated cells. Vovocales with 16 cells or more form spherical colonies, and their largest members have germ-soma separation (all species in the genus Volvox). V. barberi is the largest Volvox species recorded in terms of cell number (10,000-50,000 cells) and has the highest somatic to reproductive cell ratio (S/R). Since they are negatively buoyant, Volvocales need flagellar beating to avoid sinking and to reach light and nutrients. We measured V. barberi swimming speed and total swimming force. V. barberi swimming speeds are the highest recorded so far for volvocine algae (∼600 µm · s(-1) ). With this speed, V. barberi colonies have the potential to perform daily vertical migrations in the water column at speeds of 2-3 m · h(-1) , consistent with what has been reported about Volvox populations in the wild. Moreover, V. barberi data fit well in the scaling relationships derived with the other smaller Volvox species, namely, that the upward swimming speed Vup ∝N(0.28) and the total swimming force FS ∝N(0.77) (N = colony cell number). These allometric relationships have been important supporting evidence for reaching the conclusion that as size increases, colonies have to invest in cell specialization and increase their S/R to increase their motility capabilities to stay afloat and motile.

12.
J Phycol ; 44(3): 751-60, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27041433

RESUMEN

We examined the molecular phylogeny and ultrastructure of Chlorogonium and related species to establish the natural taxonomy at the generic level. Phylogenetic analyses of 18S rRNA and RUBISCO LSU (rbcL) gene sequences revealed two separate clades of Chlorogonium from which Chlorogonium (Cg.) fusiforme Matv. was robustly separated. One clade comprised Cg. neglectum Pascher and Cg. kasakii Nozaki, whereas the other clade included the type species Cg. euchlorum (Ehrenb.) Ehrenb., Cg. elongatum (P. A. Dang.) Francé, and Cg. capillatum Nozaki, M. Watanabe et Aizawa. On the basis of unique ultrastructural characteristics, we described Gungnir Nakada gen. nov. comprising three species: G. neglectum (Pascher) Nakada comb. nov., G. mantoniae (H. Ettl) Nakada comb. nov., and G. kasakii (Nozaki) Nakada comb. nov. We also emended Chlorogonium as a monophyletic genus composed of Cg. euchlorum, Cg. elongatum, and Cg. capillatum. Because Cg. fusiforme was distinguished from the redefined Chlorogonium and Gungnir by the structure of its starch plate, which is associated with pyrenoids, we reclassified this species as Rusalka fusiformis (Matv.) Nakada gen. et comb. nov.

13.
J Phycol ; 36(4): 714-722, 2000 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-29542153

RESUMEN

The ultrastructure of zoospores of Asterococcus superbus (Cienk.) Scherffel was studied to provide ultrastructural data relevant to the systematic position of the genus. Our results demonstrated that the motile cells of A. superbus were similar to those of the tetrasporalean algae, such as Tetraspora sp. and Tetrasporidium javanicum Moebius. The flagellar apparatus of A. superbus had the same clock-wise orientation of basal bodies and the V-shaped alignment of basal bodies as Tetraspora cylindrica (Wahlb.) Ag. and T. lubrica (Roth) Ag., but differed by having rhizoplasts. The motile cells of A. superbus displayed chlamydomonadal ultrastructure, similar to Chlamydomonas reinhardtii Dangeard, including the absolute configuration of the flagellar apparatus. The pyrenoid matrix in A. superbus, however, showed a large lateral invagination occupied by chloroplast stroma, a characteristic that has never been observed in Chlorophyta.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA