Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurosci Lett ; 842: 137970, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245254

RESUMEN

The subthreshold A-type potassium current (Isa), mediated by Kv4, is a hyperpolarizing current that decreases neuronal excitability. The Kv4 accessory proteins, DPP6 and DPP10 (DPPs), modulate the current. Thus, agents that modify the binding of DPPs to these channels affect neuronal excitability. Vildagliptin inhibits DPP4, a protein with structural similarities to DPPs. In this study, we investigated whether vildagliptin, an antidiabetic medication, exhibits anti-epileptic properties. Seizures were induced in rats by injecting pentylenetetrazole (PTZ), and vildagliptin at different doses was administered one hour before the PTZ injection. Vildagliptin treatment delayed the onset of epileptiform activity and reduced seizure duration and frequency. A dose-dependent decrease in DPPs was observed in vildagliptin-treated rats. We induced epileptic activity in cultured hippocampal neurons and found that treatment with vildagliptin suppressed the firing frequency. We found that the Isa current in cultured neurons was mediated by Kv4s and suppressed in epileptic neurons. Furthermore, the Kv4s to DPPs ratio in the channel complex was decreased in epileptic neurons, but was restored to a normal level in vildagliptin-treated neurons. In conclusion, the anti-epileptic effects of vildagliptin were likely mediated by the suppression of seizure-induced DPP6 and DPP10 expression and decreased membrane excitability by restoring Isa current density via the regulation of DPPs and Kv4s binding, indicating that vildagliptin may be a novel treatment option for epileptic patients.

2.
J R Soc Interface ; 14(129)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28381642

RESUMEN

Voltage-dependent conductances in many spiking neurons are tuned to reduce action potential energy consumption, so improving the energy efficiency of spike coding. However, the contribution of voltage-dependent conductances to the energy efficiency of analogue coding, by graded potentials in dendrites and non-spiking neurons, remains unclear. We investigate the contribution of voltage-dependent conductances to the energy efficiency of analogue coding by modelling blowfly R1-6 photoreceptor membrane. Two voltage-dependent delayed rectifier K+ conductances (DRs) shape the membrane's voltage response and contribute to light adaptation. They make two types of energy saving. By reducing membrane resistance upon depolarization they convert the cheap, low bandwidth membrane needed in dim light to the expensive high bandwidth membrane needed in bright light. This investment of energy in bandwidth according to functional requirements can halve daily energy consumption. Second, DRs produce negative feedback that reduces membrane impedance and increases bandwidth. This negative feedback allows an active membrane with DRs to consume at least 30% less energy than a passive membrane with the same capacitance and bandwidth. Voltage-dependent conductances in other non-spiking neurons, and in dendrites, might be organized to make similar savings.


Asunto(s)
Dípteros/fisiología , Proteínas de Insectos/fisiología , Modelos Biológicos , Células Fotorreceptoras de Invertebrados/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Potenciales de Acción , Animales , Conductividad Eléctrica , Metabolismo Energético , Activación del Canal Iónico , Potenciales de la Membrana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA