Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 266: 122407, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39276473

RESUMEN

Phosphorus recovery via vivianite extraction from digested sludge has recently gained considerable interest. The separation of vivianite was demonstrated earlier at the pilot scale, and operational parameters were optimized. In this study, we tested the robustness of this technology by changing the sludge characteristics, such as dry matter, and via that, sludge viscosity, and vivianite particle size. It was proven that the main factor influencing recovery was the concentration of vivianite in the feed. The technology can extract vivianite even when the sludge has higher dry matter (1.8% - 3.3%) and, therefore, higher viscosity. Smaller vivianite sizes (< 10 µm) can still be recovered but at a lower rate. This made magnetic separation applicable to a wide range of wastewater treatment plants.

2.
Water Res ; 266: 122361, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39244864

RESUMEN

This paper examines the acid leaching efficiencies of Fe and P from vivianite slurry (VS, Fe3(PO4)2·8H2O), which is magnetically separated from anaerobic digested sludge, and elaborates on Fe and P reuse routes. The characteristics and dissolution behavior of raw VS in hydrochloric, sulfuric, phosphoric, oxalic, and citric acids are investigated. Results reveal that the primary impurities in VS are organic matter, other phosphate compounds, and Mg present in the vivianite crystal structure. Hydrochloric and sulfuric acids could effectively extract P (90%) from VS at an optimal hydrogen-to-phosphorus (H⁺/P) ratio of 2.5, compared with sewage sludge ash (SSA) that normally needs an H⁺/P ratio greater than 3. Hence, VS can be employed as an alternative P resource following a similar recovery route used with SSA. However, in comparison to SSA, VS use can decrease acid consumption in P extraction and the requirement for the extensive purification of cationic impurities. Furthermore, oxalic acid effectively facilitates the separation of P and Fe in VS by precipitating Fe as insoluble ferrous oxalate in acidic conditions, leading to a high Fe recovery rate of 95%. The recovery and reuse of Fe through the oxalic acid route further improves the feasibility of VS as an alternate resource.

3.
Water Res ; 263: 122195, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39116713

RESUMEN

Iron minerals in nature are pivotal hosts for heavy metals, significantly influencing their geochemical cycling and eventual fate. It is generally accepted that, vivianite, a prevalent iron phosphate mineral in aquatic and terrestrial environments, exhibits a limited capacity for adsorbing cationic heavy metals. However, our study unveils a remarkable phenomenon that the synergistic interaction between sulfide (S2-) and vivianite triggers an unexpected sulfidation-reoxidation process, enhancing the immobilization of heavy metals such as cadmium (Cd), copper (Cu), and zinc (Zn). For instance, the combination of vivianite and S2- boosted the removal of Cd2+ from the aqueous phase under anaerobic conditions, and ensured the retention of Cd stabilized in the solid phase when shifted to aerobic conditions. It is intriguing to note that no discrete FeS formation was detected in the sulfidation phase, and the primary crystal structure of vivianite largely retained its integrity throughout the whole process. Detailed molecular-level investigations indicate that sulfidation predominantly targets the Fe(II) sites at the corners of the PO4 tetrahedron in vivianite. With the transition to aerobic conditions, the exothermic oxidation of CdS and the S sites in vivianite initiates, rendering it thermodynamically favorable for Cd to form multidentate coordination structures, predominantly through the Cd-O-P and Cd-O-Fe bonds. This mechanism elucidates how Cd is incorporated into the vivianite structure, highlighting a novel pathway for heavy metal immobilization via the sulfidation-reoxidation dynamics in iron phosphate minerals.


Asunto(s)
Metales Pesados , Oxidación-Reducción , Metales Pesados/química , Sulfuros/química , Contaminantes Químicos del Agua/química , Fosfatos/química , Minerales/química , Hierro/química , Adsorción
4.
Water Res ; 265: 122250, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39154399

RESUMEN

The reducibility of iron oxides, depending on their properties, influences the kinetics of dissimilatory iron reduction (DIR) during vivianite recovery in sewage. This study elucidated the correlation between properties of iron oxides and kinetics of DIR during the long-term transformation into vivianite, mediated by Geobacter sulfurreducens PCA and sewage. The positive correlation between surface reactivity of iron oxides and reduction rate constant (k) influenced the terminal vivianite recovery efficiency. Akaganeite with the highest adhesion work and surface energy required the lowest reduction energy (Ea), obtained the highest k of 1.36 × 10-2 day-1 and vivianite recovery efficiency of 43 %. The vivianite yield with akaganeite as iron source was 76-164 % higher than goethite, hematite, feroxyhyte, and ferrihydrite in sewage. The distribution of P with akaganeite during DIR in sewage further suggested a more efficient pathway of direct vivianite formation via bio-reduced Fe(II) rather than indirect reduction of ferric phosphate precipitates. Thus, akaganeite was screened out as superior iron source among various iron oxides for vivianite recovery, which provided insights into the fate of iron sources and the cycle of P in sewage.


Asunto(s)
Compuestos Férricos , Fósforo , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Compuestos Férricos/química , Minerales/química , Hierro/química , Geobacter/metabolismo , Cinética
5.
Water Res ; 263: 122161, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39084092

RESUMEN

Recycling phosphorus from waste activated sludge (WAS) is an effective method to address the nonrenewable nature of phosphorus and mitigate environmental pollution. To overcome the challenge of low phosphorus recovery from WAS due to insufficient disintegration, a method using a citric acid-based natural deep eutectic solvent (CA-NADES) assisted with low-temperature pretreatment was proposed to efficiently release and recover phosphorus. The results of 31P nuclear magnetic resonance (NMR) confirmed that low-temperature pretreatment promoted the conversion of organic phosphorus (OP) to inorganic phosphorus (IP) and enhanced the effect of CA-NADES. Changes in the three-dimensional excitation-emission matrix (3D-EEM) and flow cytometry (FCM) indicated that the method of CA-NADES with low-temperature thermal simultaneously release IP and OP by disintegrating sludge flocs, dissolving extracellular polymeric substances (EPS) structure, and cracking cells. When 5 % (v/v) of CA-NADES was added and thermally treated at 60 °C for 30 min, 43 % of total phosphorus (TP) was released from the sludge. The concentrations of proteins and polysaccharides reached 826 and 331 mg/L, respectively, which were 6.30 and 14.43 times higher than those of raw sludge. The dewatering and settling of the sludge were also improved. Metals were either enriched in the solid phase or released into the liquid phase in small quantities (most efficiencies of less than 10 %) for subsequent clean recovery. The released phosphorus was successfully recovered as vivianite with a rate of 90 %. This study develops an efficient, green, and sustainable method for phosphorus recovery from sludge using NADES and provides new insights into the high-value conversion of sludge.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Solventes , Fósforo/química , Aguas del Alcantarillado/química , Solventes/química , Eliminación de Residuos Líquidos/métodos , Reciclaje
6.
Environ Res ; 260: 119640, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39029727

RESUMEN

Phosphorus in sewage is mostly enriched in activated sludge in wastewater treatment plants, making excess sludge an appropriate material for phosphorus recovery. The potential of vivianite (Fe3(PO4)2·8H2O) crystallization-based phosphorus recovery during the anaerobic digestion of thermally hydrolyzed sludge was discussed with influences of organic compounds on the formation of vivianite crystals being investigated in detail. Bovine serum albumin, humic acids and alginate, as model compounds of proteins, humic acids and polysaccharides, all inhibited vivianite crystallization, with the influence of humic acids being the most significant. A sludge retention time of >12 d for effective degradation of organic compounds and a certain degree of FeII excess are suggested to decrease the organics resulting inhibition. The results demonstrate the compatibility of vivianite-crystallization pathway of phosphorus recovery with anaerobic sludge digesters, and reveal the complexity of vivianite formation in the sludge with further research warranted to minimize the inhibitory influences.


Asunto(s)
Cristalización , Fósforo , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Fósforo/química , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Calor , Hidrólisis , Sustancias Húmicas/análisis , Albúmina Sérica Bovina/química , Fosfatos/química
7.
Bioresour Technol ; 408: 131179, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39084532

RESUMEN

An iron-retrofitted anaerobic baffled reactor (ABR) system was developed for the effective treatment of rural wastewater with reduced maintenance demand and aeration costs. Average removal efficiencies of chemical oxygen demand, total nitrogen and total phosphorus of 99.4%, 62.7% and 92.6% were achieved respectively, when the ABR system was operating at steady state. With effective bioreduction of FeIII in the anaerobic chambers, phosphorus was immobilized in the sludge as vivianite, the sole phosphorus-carrying mineral. The FeIII in the recirculated sludge induced Feammox in the ABR reactor, contributing 14.8% to total nitrogen removal. Biophase separation and enrichment of microorganisms associated with iron and nitrogen transformations were observed in the system after Fe dosing, which enhanced the removal of pollutants. The coupling of Feammox and vivianite crystallization to remove nitrogen and phosphorus in an iron-retrofitted ABR would appear to be a promising technology for rural wastewater treatment.


Asunto(s)
Reactores Biológicos , Hierro , Fósforo , Aguas del Alcantarillado , Aguas Residuales , Purificación del Agua , Hierro/química , Purificación del Agua/métodos , Anaerobiosis , Aguas Residuales/química , Análisis de la Demanda Biológica de Oxígeno , Nitrógeno , Eliminación de Residuos Líquidos/métodos , Nutrientes , Población Rural
8.
Sci Total Environ ; 946: 173560, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38823710

RESUMEN

Class A biosolids from water resource recovery facilities (WRRFs) are increasingly used as sustainable alternatives to synthetic fertilizers. However, the high phosphorus to nitrogen ratio in biosolids leads to a potential accumulation of phosphorus after repeated land applications. Extracting vivianite, an FeP mineral, prior to the final dewatering step in the biosolids treatment can reduce the P content in the resulting class A biosolids and achieve a P:N ratio closer to the 1:2 of synthetic fertilizers. Using ICP-MS, IC, UV-Vis colorimetric methods, Mössbauer spectroscopy, and SEM-EDX, a full-scale characterization of vivianite at the Blue Plains Advanced Wastewater Treatment Plant (AWTTP) was surveyed throughout the biosolids treatment train. Results showed that the vivianite-bound phosphorus in primary sludge thickening, before pre-dewatering, after thermal hydrolysis, and after anaerobic digestion corresponded to 8 %, 52 %, 40 %, and 49 % of the total phosphorus in the treatment influent. Similarly, the vivianite-bound iron concentration also corresponded to 8 %, 52 %, 40 %, and 49 % of the total iron present (from FeCl3 dosing), because the molar ratio between total iron and total incoming phosphorus was 1.5:1, which is the same stoichiometry of vivianite. Based on current P:N levels in the Class A biosolids at Blue Plains, a vivianite recovery target of 40 % to ideally 70 % is required in locations with high vivianite content to reach a P:N ratio in the resulting class A biosolid that matches synthetic fertilizers of 1:1.3 to 1:2, respectively. A financial analysis on recycling iron from the recovered vivianite had estimated that 14-25 % of Blue Plain's annual FeCl3 demand can potentially be met. Additionally, model simulations with Visual Minteq were used to evaluate the pre-treatment options that maximize vivianite recovery at different solids treatment train locations.


Asunto(s)
Fósforo , Eliminación de Residuos Líquidos , Aguas Residuales , Fósforo/análisis , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Fertilizantes , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Nutrientes/análisis , Aguas del Alcantarillado/química , Hierro
9.
Sci Rep ; 14(1): 14885, 2024 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937525

RESUMEN

Past and present habitability of Mars have been intensely studied in the context of the search for signals of life. Despite the harsh conditions observed today on the planet, some ancient Mars environments could have harbored specific characteristics able to mitigate several challenges for the development of microbial life. In such environments, Fe2+ minerals like siderite (already identified on Mars), and vivianite (proposed, but not confirmed) could sustain a chemolithoautotrophic community. In this study, we investigate the ability of the acidophilic iron-oxidizing chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans to use these minerals as its sole energy source. A. ferrooxidans was grown in media containing siderite or vivianite under different conditions and compared to abiotic controls. Our experiments demonstrated that this microorganism was able to grow, obtaining its energy from the oxidation of Fe2+ that came from the solubilization of these minerals under low pH. Additionally, in sealed flasks without CO2, A. ferrooxidans was able to fix carbon directly from the carbonate ion released from siderite for biomass production, indicating that it could be able to colonize subsurface environments with little or no contact with an atmosphere. These previously unexplored abilities broaden our knowledge on the variety of minerals able to sustain life. In the context of astrobiology, this expands the list of geomicrobiological processes that should be taken into account when considering the habitability of environments beyond Earth, and opens for investigation the possible biological traces left on these substrates as biosignatures.


Asunto(s)
Acidithiobacillus , Marte , Acidithiobacillus/metabolismo , Acidithiobacillus/crecimiento & desarrollo , Oxidación-Reducción , Hierro/metabolismo , Concentración de Iones de Hidrógeno , Compuestos Ferrosos/metabolismo , Minerales/metabolismo , Exobiología , Medio Ambiente Extraterrestre , Carbonatos , Compuestos Férricos
10.
J Environ Manage ; 360: 121110, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38733846

RESUMEN

Electro-fermentation (EF) has been extensively studied for recovering hydrogen and phosphorus from waste activated sludge (WAS), while was limited for the further application due to the low hydrogen yield and phosphorus recovery efficiency. This study proposed an efficient strategy for hydrogen and vivianite recovery from the simulated sludge fermentation liquid by sacrificial iron anode in EF. The optimum hydrogen productivity and the utilization efficiency of short chain fatty acids (SCFAs) reached 45.2 mmol/g COD and 77.6% at 5 d in pH 8. Phosphate removal efficiency achieved at 90.8% at 2 d and the high crystallinity and weight percentage of vivianite (84.8%) was obtained. The functional microbes, i.e., anaerobic fermentative bacteria, electrochemical active bacteria, homo-acetogens and iron-reducing bacteria were highly enriched and the inherent interaction between the microbial consortia and environmental variables was thoroughly explored. This work may provide a theoretical basis for energy/resource recovery from WAS in the further implementation.


Asunto(s)
Electrodos , Fermentación , Hidrógeno , Hierro , Fosfatos , Aguas del Alcantarillado , Hidrógeno/metabolismo , Hierro/química , Hierro/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Eliminación de Residuos Líquidos/métodos , Fósforo/química , Fósforo/metabolismo
11.
Environ Res ; 242: 117667, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37980994

RESUMEN

Vivianite (Fe3(PO4)2·8H2O), a sink for phosphorus, is a key mineralization product formed during the microbial reduction of phosphate-containing Fe(III) minerals in natural systems, and also in wastewater treatment where Fe(III)-minerals are used to remove phosphate. As biovivianite is a potentially useful Fe and P fertiliser, there is much interest in harnessing microbial biovivianite synthesis for circular economy applications. In this study, we investigated the factors that influence the formation of microbially-synthesized vivianite (biovivianite) under laboratory batch systems including the presence and absence of phosphate and electron shuttle, the buffer system, pH, and the type of Fe(III)-reducing bacteria (comparing Geobacter sulfurreducens and Shewanella putrefaciens). The rate of Fe(II) production, and its interactions with the residual Fe(III) and other oxyanions (e.g., phosphate and carbonate) were the main factors that controlled the rate and extent of biovivianite formation. Higher concentrations of phosphate (e.g., P/Fe = 1) in the presence of an electron shuttle, at an initial pH between 6 and 7, were needed for optimal biovivianite formation. Green rust, a key intermediate in biovivianite production, could be detected as an endpoint alongside vivianite and metavivianite (Fe2+Fe3+2(PO4)2.(OH)2.6H2O), in treatments with G. sulfurreducens and S. putrefaciens. However, XRD indicated that vivianite abundance was higher in experiments containing G. sulfurreducens, where it dominated. This study, therefore, shows that vivianite formation can be controlled to optimize yield during microbial processing of phosphate-loaded Fe(III) materials generated from water treatment processes.


Asunto(s)
Compuestos Férricos , Compuestos Ferrosos , Shewanella putrefaciens , Oxidación-Reducción , Fosfatos , Minerales
12.
Int J Biol Macromol ; 259(Pt 1): 128624, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38061519

RESUMEN

Damaging the outer layer of the body (the skin) has been a common issue for decades. Fabrication of nanofibrous membranes via the electrospinning technique for the sake of making the wound healing process more facile has caught a lot of interest. For this purpose, a polymeric scaffold of polylactic acid (PLA) was doped with nanoparticles with different concentrations of turmeric/hydroxyapatite/vivianite/graphene oxide. The obtained membrane was tested by XRD, SEM, FTIR, and XPS. The surface topography of the scaffold has experienced changes upon adding different concentrations of the nanoparticles. The contact angle was measured by water droplets. It accentuated change in CA starting from 43.9o for pure condition of PLA to 67.7o for PLA/turmeric/vivianite. The thermogravimetric analysis (TGA) test stated that the PLA scaffold features are thermally stable in relatively high-temperature conditions initiating from room temperature to about 300 °C, meeting the maximum loss in mass of about 5 %. The cell viability was carried out in prepared vitro for the sample which contains PLA/turmeric/vivianite/GO, it was elucidated that the IC50 was around 3060 µg/ml.


Asunto(s)
Compuestos Ferrosos , Nanofibras , Nanopartículas , Fosfatos , Andamios del Tejido , Durapatita , Curcuma , Poliésteres , Vendajes
13.
Sci Total Environ ; 912: 169520, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38141995

RESUMEN

Phosphorus recovery is a vital element for the circular economy. Wastewater, especially sewage sludge, shows great potential for recovering phosphate in the form of vivianite. This work focuses on studying the iron, phosphorus, and sulfur interactions at full-scale wastewater treatment plants (Viikinmäki, Finland and Seine Aval, France) with the goal of identifying unit processes with a potential for vivianite formation. Concentrations of iron(III) and iron(II), phosphorus, and sulfur were used to evaluate the reduction of iron and the formation potential of vivianite. Mössbauer spectroscopy and X-ray diffraction (XRD) analysis were used to confirm the presence of vivianite in various locations on sludge lines. The results show that the vivianite formation potential increases as the molar Fe:P ratio increases, the anaerobic sludge retention time increases, and the sulfate concentration decreases. The digester is a prominent location for vivianite recovery, but not the only one. This work gives valuable insights into the dynamic interrelations of iron, phosphorus, and sulfur in full-scale conditions. These results will support the understanding of vivianite formation and pave the way for an alternative solution for vivianite recovery for example in plants that do not have an anaerobic digester.


Asunto(s)
Compuestos Férricos , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Fosfatos/química , Compuestos Ferrosos/química , Hierro/química , Fósforo/química , Azufre
14.
J Environ Manage ; 348: 119223, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827085

RESUMEN

The recovery of phosphorus (P) through vivianite crystallization offers a promising approach for resource utilization in wastewater treatment plants. However, this process encounters challenges in terms of small product size and low purity. The study aimed to assess the feasibility of using quartz sand as a seed material to enhance P recovery and vivianite crystal characteristics from anaerobic fermentation supernatant. Various factors, including seed dosage, seed size, Fe/P ratio, and pH, were systematically tested in batch experiments to assess their influence. Results demonstrated that the effect of seed enhancement on vivianite crystallization was more pronounced under higher seed dosages, smaller seed sizes, and lower pH or Fe/P ratio. The addition of seeds increased P recovery by 4.43% in the actual anaerobic fermentation supernatant and also augmented the average particle size of the recovered product from 19.57 to 39.28 µm. Moreover, introducing quartz sand as a seed material effectively reduced co-precipitation, leading to a notable 12.5% increase in the purity of the recovered vivianite compared to the non-seeded process. The formation of an ion adsorption layer on the surface of quartz sand facilitated crystal attachment and growth, significantly accelerating the vivianite crystallization rate and enhancing P recovery. The economic analysis focused on chemical costs further affirmed the economic viability of using quartz sand as a seed material for P recovery through vivianite crystallization, which provides valuable insights for future research and engineering applications.


Asunto(s)
Fósforo , Cuarzo , Fermentación , Arena , Anaerobiosis , Cristalización , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Fosfatos/química , Compuestos Ferrosos/química
15.
Chemosphere ; 345: 140500, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866501

RESUMEN

Chemically mediated recovery of phosphorous (P) as vivianite from the sludges generated by chemical phosphorus removal (CPR) is a potential means of enhancing sustainability of wastewater treatment. This study marks an initial attempt to explore direct P release and recovery from lab synthetic Fe-P sludge via reductive dissolution using ascorbic acid (AA) under acidic conditions. The effects of AA/Fe molar ratio, age of Fe-P sludge and pH were examined to find the optimum conditions for Fe-P reductive solubilization and vivianite precipitation. The performance of the reductive, chelating, and acidic effects of AA toward Fe-P sludge were evaluated by comparison with hydroxylamine (reducing agent), oxalic acid (chelating agent), and inorganic acids (pH effect) including HNO3, HCl, and H2SO4. Full solubilization of Fe-P sludge and reduction of Fe3+ were observed at pH values 3 and 4 for two Fe/AA molar ratios of 1:2 and 1:4. Sludge age (up to 11 days) did not affect the reductive solubilization of Fe-P with AA addition. The reductive dissolution of Fe-P sludge with hydroxylamine was negligible, while both P (95 ± 2%) and Fe3+ (90 ± 1%) were solubilized through non-reductive dissolution by oxalic acid treatment at an Fe/oxalic acid molar ratio 1:2 and a pH 3. With sludge treatment with inorganic acids at pH 3, P and Fe release was very low (<10%) compared to AA and oxalic acid treatment. After full solubilization of Fe-P sludge by AA treatment at pH 3 it was possible to recover the phosphorus and iron as vivianite by simple pH adjustment to pH 7; P and Fe recoveries of 88 ± 2% and 90 ± 1% respectively were achieved in this manner. XRD analysis, Fe/P molar ratio measurements, and magnetic attraction confirmed vivianite formation. PHREEQC modeling showed a reasonable agreement with the measured release of P and Fe from Fe-P sludge and vivianite formation.


Asunto(s)
Fósforo , Aguas Residuales , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Fosfatos , Ácido Ascórbico , Ácido Oxálico , Hidroxilaminas
16.
Water Res ; 245: 120621, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37717332

RESUMEN

Vivianite recovery from wastewater driven by Geobacter is one of the promising approaches to address the challenges of phosphorus (P) resource shortage and eutrophication. However, the interfere of heavy metals which are prevalent in many actual wastewater with this process is rarely reported. In this study, we investigated the impact of heavy metals (i.e., Cu and Zn ions) on microbial activity, Fe reduction, P recovery efficiency, and their fate during Geobacter-induced vivianite recovery process. The experimental results showed that low and medium concentrations of Cu and Zn prolonged the Fe reduction and P recovery time but had little effect on the final P recovery efficiency. However, high concentrations of Cu and Zn ultimately inhibit vivianite formation. In addition, the different concentrations of Cu and Zn showed different effects on the morphology of the recovered vivianite. The migration of Cu and Zn was analysed by stepwise extraction of heavy metals in the vivianite. Medium concentrations of Cu and Zn were more likely to co-precipitate with vivianite, while adsorption was the primary mechanism at low concentrations. Furthermore, there were differences in the fate of Cu and Zn, and a competition mechanism was observed. Finally, we found that increasing the Fe/P ratio can significantly reduce the residues of heavy metals in vivianite. It also increased the adsorbed Cu and Zn proportion and reduced co-precipitation. These results provide insights into improving the efficiency of vivianite recovery and managing the environmental risks of heavy metal in the recovered product.

17.
Environ Sci Pollut Res Int ; 30(37): 86699-86740, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37438499

RESUMEN

Nutrient-rich waste streams from domestic and industrial sources and the increasing application of synthetic fertilizers have resulted in a huge-scale influx of reactive nitrogen and phosphorus in the environment. The higher concentrations of these pollutants induce eutrophication and foster degradation of aquatic biodiversity. Besides, phosphorus being non-renewable resource is under the risk of rapid depletion. Hence, recovery and reuse of the phosphorus and nitrogen are necessary. Over the years, nutrient recovery, low-carbon energy, and sustainable bioremediation of wastewater have received significant interest. The conventional wastewater treatment technologies have higher energy demand and nutrient removal entails a major cost in the treatment process. For these issues, bio-electrochemical system (BES) has been considered as sustainable and environment friendly wastewater treatment technologies that utilize the energy contained in the wastewater so as to recovery nutrients and purify wastewater. Therefore, this article comprehensively focuses and critically analyzes the potential sources of nutrients, working mechanism of BES, and different nutrient recovery strategies to unlock the upscaling opportunities. Also, economic analysis was done to understand the technical feasibility and potential market value of recovered nutrients. Hence, this review article will be useful in establishing waste management policies and framework along with development of advanced configurations with major emphasis on nutrient recovery rather than removal from the waste stream.


Asunto(s)
Fósforo , Aguas Residuales , Fósforo/análisis , Nitrógeno/análisis , Nutrientes/análisis , Eliminación de Residuos Líquidos/métodos
18.
Sci Total Environ ; 897: 165416, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37433337

RESUMEN

Recovery of phosphorus (P) via vivianite crystallization is an effective strategy to recycle resources from the anaerobic fermentation supernatant. However, the presence of different components in the anaerobic fermentation supernatant (e.g., polysaccharides and proteins) might alter conditions for optimal growth of vivianite crystals, resulting in distinct vivianite characteristics. In the present study, the effect of different components on vivianite crystallization was explored. Then, the reaction parameters (pH, Fe/P, and stirring speed) for P recovery from synthetic anaerobic fermentation supernatant as vivianite were optimized using response surface methodology, and the relationship between crystal properties and supersaturation was elucidated using a thermodynamic equilibrium model. The optimized values for pH, Fe/P, and stirring speed were found to be 7.8, 1.74, and 500 rpm respectively, resulting in 90.54 % P recovery efficiency. Moreover, the variation of reaction parameters did not change the crystalline structure of the recovered vivianite but influenced its morphology, size, and purity. Thermodynamic analysis suggested the saturation index (SI) of vivianite increased with increasing pH and Fe/P ratio, leading to a facilitative effect on vivianite crystallization. However, when the SI was >11, homogenous nucleation occurred so that the nucleation rate was much higher than the crystal growth rate, causing a smaller crystal size. The findings presented herein will be highly valued for the future large-scale application of the vivianite crystallization process for wastewater treatment.


Asunto(s)
Fósforo , Eliminación de Residuos Líquidos , Fermentación , Cristalización , Anaerobiosis , Aguas del Alcantarillado , Fosfatos , Compuestos Ferrosos
19.
J Environ Manage ; 341: 117997, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37141722

RESUMEN

Contaminant removal from (waste)waters by magnetite is a promising technology. In the present experimental study, a magnetite recycled from the steel industry waste (zero-valent iron powder) was used to investigate the sorption of As, Sb and U in phosphate-free and -rich suspensions, i.e. as a remediation for the acidic phosphogypsum leachates derived from the phosphate fertilizer industry. The results showed up to 98% U removal under controlled pH conditions, while phosphate did not hinder this immobilisation. In contrast, the results confirmed the limited uptake of As and Sb oxyanions by magnetite in presence of phosphate as the competing anion, displaying only 7-11% removal, compared to 83-87% in the phosphate-free sorption experiments. To limit this wastewater problem, raw ZVI anaerobic oxidation was examined as mechanism to increase the pH and as a source of Fe2+ in a first step, and in a second step to remove phosphate via vivianite precipitation, therefore prior to the reaction with magnetite. UV-Vis, XRD and SEM-EDS showed that vivianite precipitation is feasible at pH > 4.5, mainly depending on the phosphate concentration. The higher the [PO43-], the lower is the pH at which vivianite precipitates and the higher the % removal of phosphate from solution. It is anticipated that an optimum 3-steps design with separate reactors controlling the conditions of ZVI oxidation, followed by vivianite precipitation and finally, reaction with magnetite, can achieve high contaminant uptake in field applications.


Asunto(s)
Óxido Ferrosoférrico , Contaminantes Químicos del Agua , Hierro , Compuestos Ferrosos , Aguas Residuales
20.
Sci Total Environ ; 884: 163850, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37137372

RESUMEN

Carbon materials have been confirmed to promote phosphorus recovery as vivianite through enhancing dissimilatory iron reduction (DIR), which alleviates phosphorus crisis. Carbon black (CB) exhibits contradictory dual roles of cytotoxicity inducer and electron transfer bridge towards extracellular electron transfer (EET). Herein, the effect of CB on vivianite biosynthesis was investigated with dissimilatory iron reduction bacteria (DIRB) or sewage. With Geobacter sulfurreducens PCA as inoculum, the vivianite recovery efficiency increased accompanied with CB concentrations and enhanced by 39 % with 2000 mg·L-1 CB. G. sulfurreducens PCA activated the adaptation mechanism of secreting extracellular polymeric substance (EPS) to resist cytotoxicity of CB. While in sewage, the highest iron reduction efficiency of 64 % was obtained with 500 mg·L-1 CB, which was appropriate for functional bacterial selectivity like Proteobacteria and bio-transformation from Fe(III)-P to vivianite. The balance of CB's dual roles was regulated by inducing the adaptation of DIRB to gradient CB concentrations. This study provide an innovative perspective of carbon materials with dual roles for vivianite formation enhancement.


Asunto(s)
Fósforo , Hollín , Aguas del Alcantarillado , Compuestos Férricos , Matriz Extracelular de Sustancias Poliméricas , Eliminación de Residuos Líquidos , Fosfatos , Compuestos Ferrosos , Bacterias , Hierro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA