Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Vaccines (Basel) ; 12(8)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39204038

RESUMEN

Since the initiation of the COVID-19 pandemic, there has been a need for the development of diagnostic methods to determine the factors implicated in mounting an immune response against the virus. The most promising indicator has been suggested to be neutralizing antibodies (nAbs), which mainly block the interaction between the Spike protein (S) of SARS-CoV-2 and the host entry receptor ACE2. In this study, we aimed to develop and optimize conditions of a competitive ELISA to measure serum neutralizing titer, using a recombinant trimeric Spike protein modified to have six additional proline residues (S(6P)-HexaPro) and h-ACE2. The results of our surrogate Virus Neutralizing Assay (sVNA) were compared against the commercial sVNT (cPass, Nanjing GenScript Biotech Co., Nanjing City, China), using serially diluted sera from vaccinees, and a high correlation of ID50-90 titer values was observed between the two assays. Interestingly, when we tested and compared the neutralizing activity of sera from eleven fully vaccinated individuals who subsequently contracted COVID-19 (hybrid sera), we recorded a moderate correlation between the two assays, while higher sera neutralizing titers were measured with sVNA. Our data indicated that the sVNA, as a more biologically relevant model assay that paired the trimeric S(6P) with ACE2, instead of the isolated RBD-ACE2 pairing cPass test, could identify nAbs other than the RBD-RBM specific ones.

2.
Virology ; 598: 110174, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39029332

RESUMEN

Getah virus (GETV) is a re-emerging mosquito-borne RNA virus that induces fever, hind limb edema, swollen submandibular lymph nodes, and urticaria in horses. In pigs, the virus often results in stillbirths among pregnant sows, and neurological symptoms leading to death in piglets. Currently, there are no specific treatments or drugs available for GETV infection. The use of reporter viruses to monitor viral replication and spread in real-time within infected cells and animals provides a powerful tool for targeting antiviral drugs throughout the viral life cycle. Their fluorescence-tracked characteristics greatly facilitate virus neutralization tests (VNTs). In this study, we engineered two recombinant viruses by inserting different reporter protein genes at the 3' end of the structural protein gene, an unreported location that can accommodate exogenous genes. The rGEEiLOV and rGEEGFP viruses demonstrated genetic stability for at least five passages and replicated at a rate similar to that of the parental virus in BHK-21 cells. The rGEEGFP virus facilitated viral neutralization testing. Additionally, we used the reporter virus rGEEGFP to confirm ivermectin, a broad-spectrum antiparasitic agent, as a potential inhibitor of GETV in vitro. Ivermectin appears to inhibit the early replication stages of the virus and can block cell-to-cell viral transmission. In conclusion, rGEEGFP holds significant potential for antiviral screening to identify specific inhibitors against GETV and for use in viral neutralization tests.


Asunto(s)
Antivirales , Genes Reporteros , Proteínas Fluorescentes Verdes , Pruebas de Neutralización , Animales , Antivirales/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Línea Celular , Evaluación Preclínica de Medicamentos/métodos , Replicación Viral/efectos de los fármacos , Alphavirus/genética , Alphavirus/efectos de los fármacos , Porcinos , Cricetinae
3.
Artículo en Inglés | MEDLINE | ID: mdl-39085576

RESUMEN

Effective strategies against the spread of respiratory viruses are needed, as tragically demonstrated during the COVID-19 pandemic. Apart from vaccines, other preventive or protective measures are necessary: one promising strategy involves the nasal delivery of preventive or protective agents, targeting the site of initial infection. Harnessing the immune system's ability to produce specific antibodies, a hyperimmune serum, collected from an individual vaccinated against SARS-CoV-2, was formulated as a dry powder for nasal administration. The selection of adequate excipients and process are key to maintaining protein stability and modulating the aerodynamic properties of the powders for reaching the desired respiratory regions. To this end, a hyperimmune serum was formulated with trehalose and mannitol as bulking agents during spray drying, then the ability of the redissolved immunoglobulins to bind Spike protein was verified by ELISA; foetal bovine serum was formulated in the same conditions as a reference. Moreover, a seroneutralization assay against SARS-CoV-2 pseudoviruses generated from different variants of concern was performed. The neutralizing ability of the serum was slightly reduced with respect to the starting serum when trehalose was used as a bulking agent. The powders were loaded in hypromellose capsules and aerosolized employing a nasal insufflator in an in vitro model of the nasal cavity connected to a Next Generation Impactor. The analysis of the powder distribution confirmed that all powders were inhalable and could target, at the same time, the upper and the lower airways. This is a preliminary proof-of-concept that this approach can constitute an effective strategy to provide broad coverage and protection against SARS-CoV-2, and in general against viruses affecting the airway. According to blood availability from donors, pools of hyperimmune sera could be rapidly formulated and administered, providing a simultaneous and timely neutralization of emerging viral variants.

4.
Front Immunol ; 15: 1401471, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938560

RESUMEN

TRIM21 is a pivotal effector in the immune system, orchestrating antibody-mediated responses and modulating immune signaling. In this comprehensive study, we focus on the interaction of TRIM21 with Fc engineered antibodies and subsequent implications for viral neutralization. Through a series of analytical techniques, including biosensor assays, mass photometry, and electron microscopy, along with structure predictions, we unravel the intricate mechanisms governing the interplay between TRIM21 and antibodies. Our investigations reveal that the TRIM21 capacity to recognize, bind, and facilitate the proteasomal degradation of antibody-coated viruses is critically dependent on the affinity and avidity interplay of its interactions with antibody Fc regions. We suggest a novel binding mechanism, where TRIM21 binding to one Fc site results in the detachment of PRYSPRY from the coiled-coil domain, enhancing mobility due to its flexible linker, thereby facilitating the engagement of the second site, resulting in avidity due to bivalent engagement. These findings shed light on the dual role of TRIM21 in antiviral immunity, both in recognizing and directing viruses for intracellular degradation, and demonstrate its potential for therapeutic exploitation. The study advances our understanding of intracellular immune responses and opens new avenues for the development of antiviral strategies and innovation in tailored effector functions designed to leverage TRIM21s unique binding mode.


Asunto(s)
Anticuerpos Neutralizantes , Fragmentos Fc de Inmunoglobulinas , Unión Proteica , Ribonucleoproteínas , Humanos , Ribonucleoproteínas/inmunología , Ribonucleoproteínas/metabolismo , Anticuerpos Neutralizantes/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/metabolismo , Ingeniería de Proteínas , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Afinidad de Anticuerpos/inmunología , Animales
5.
Animals (Basel) ; 14(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38473145

RESUMEN

Human-to-animal SARS-CoV-2 transmission was observed, including a veterinarian contracting COVID-19 through close contact with an infected cat, suggesting an atypical zoonotic transmission. This study investigated the prevalence of SARS-CoV-2 antibodies in cats during human outbreaks and elucidated the correlation between cat infections and human epidemics. A total of 1107 cat serum samples were collected and screened for SARS-CoV-2 antibodies using a modified indirect ELISA human SARS-CoV-2 antibody detection kit. The samples were confirmed using a cPass™ neutralization test. The SARS-CoV-2 seropositivity rate was 22.67% (199/878), mirroring the trend observed in concomitant human case numbers. The waves of the epidemic and the provinces did not significantly impact ELISA-positive cats. Notably, Chon Buri exhibited a strong positive correlation (r = 0.99, p = 0.009) between positive cat sera and reported human case numbers. Additionally, the cPass™ neutralization test revealed a 3.99% (35/878) seropositivity rate. There were significant differences in numbers and proportions of positive cat sera between epidemic waves. In Samut Sakhon, a positive correlation (r = 1, p = 0.042) was noted between the proportion of positive cat sera and human prevalence. The findings emphasize the need for ongoing surveillance to comprehend SARS-CoV-2 dynamics in both human and feline populations.

6.
Vaccines (Basel) ; 12(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38543942

RESUMEN

BACKGROUND: Hemodialysis patients have reduced serologic immunity after SARS-CoV-2 vaccination compared to the general population and an increased risk of morbidity and mortality when exposed to SARS-CoV-2. METHODS: Sixty-six hemodialysis patients immunized four times with the original SARS-CoV-2 vaccines (BNT162b2, mRNA-1273) either received a booster with the adapted Comirnaty Original/Omicron BA.4-5 vaccine 8.3 months after the fourth vaccination and/or experienced a breakthrough infection. Two months before and four weeks after the fifth vaccination, the live-virus neutralization capacities of Omicron variants BA.5, BQ.1.1, and XBB.1.5 were determined, as well as neutralizing and quantitative anti-SARS-CoV-2 spike-specific IgG antibodies. RESULTS: Four weeks after the fifth vaccination with the adapted vaccine, significantly increased neutralizing antibodies and the neutralization of Omicron variants BA.5, BQ.1.1, and XBB.1.5 were observed. The increase was significantly higher than after the fourth vaccination for variants BQ.1.1 and BA.5. Of all analyzed variants, BA.5 was neutralized best after the fifth vaccination. We did not see a difference in humoral immunity between the group with an infection and the group with a vaccination as a fifth spike exposure. Fivefold-vaccinated patients with a breakthrough infection showed a significantly higher neutralization capacity of XBB.1.5. CONCLUSION: A fifth SARS-CoV-2 vaccination with the adapted vaccine improves both wild-type specific antibody titers and the neutralizing capacity of the current Omicron variants BA.5, BQ.1.1, and XBB.1.5 in hemodialysis patients. Additional booster vaccinations with adapted vaccines will likely improve immunity towards current and original SARS-CoV-2 variants and are, therefore, recommended in hemodialysis patients. Further longitudinal studies must show the extent to which this booster vaccination avoids a breakthrough infection.

7.
Antiviral Res ; 223: 105820, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307147

RESUMEN

The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) heavily burdened the entire world. Despite a prompt generation of vaccines and therapeutics to confront infection, the virus remains a threat. The ancestor viral strain has evolved into several variants of concern, with the Omicron variant now having many distinct sublineages. Consequently, most available antibodies targeting the spike went obsolete and thus new therapies or therapeutic formats are needed. In this review we focus on antibody targets, provide an overview of the therapeutic progress made so far, describe novel formats being explored, and lessons learned from therapeutic antibodies that can enhance pandemic preparedness.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/terapia , Pandemias/prevención & control , Anticuerpos
8.
Front Immunol ; 15: 1330864, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375482

RESUMEN

The mucosal immunity is crucial for restricting SARS-CoV-2 at its entry site. Intramuscularly applied vaccines against SARS-CoV-2 stimulate high levels of neutralizing Abs in serum, but the impact of these intramuscular vaccinations on features of mucosal immunity is less clear. Here, we analyzed kinetic and functional properties of anti-SARS-CoV-2 Abs in the saliva after vaccination with BNT162b2. We analyzed a total of 24 healthy donors longitudinally for up to 16 months. We found that specific IgG appeared in the saliva after the second vaccination, declined thereafter and reappeared after the third vaccination. Adjusting serum and saliva for the same IgG concentration revealed a strong correlation between the reactivity in these two compartments. Reactivity to VoCs correlated strongly as seen by ELISAs against RBD variants and by live-virus neutralizing assays against replication-competent viruses. For further functional analysis, we purified IgG and IgA from serum and saliva. In vaccinated donors we found neutralizing activity towards authentic virus in the IgG, but not in the IgA fraction of the saliva. In contrast, IgA with neutralizing activity appeared in the saliva only after breakthrough infection. In serum, we found neutralizing activity in both the IgA and IgG fractions. Together, we show that intramuscular mRNA vaccination transiently induces a mucosal immunity that is mediated by IgG and thus differs from the mucosal immunity after infection. Waning of specific mucosal IgG might be linked to susceptibility for breakthrough infection.


Asunto(s)
Vacuna BNT162 , COVID-19 , Humanos , Infección Irruptiva , COVID-19/prevención & control , Vacunas contra la COVID-19 , SARS-CoV-2 , Saliva , Vacunación , Inmunoglobulina A , Inmunoglobulina G
9.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37834413

RESUMEN

SARS-CoV-2 infection and/or vaccination elicit a broad range of neutralizing antibody responses against the different variants of concern (VOC). We established a new variant-adapted surrogate virus neutralization test (sVNT) and assessed the neutralization activity against the ancestral B.1 (WT) and VOC Delta, Omicron BA.1, BA.2, and BA.5. Analytical performances were compared against the respective VOC to the reference virus neutralization test (VNT) and two CE-IVD labeled kits using three different cohorts collected during the COVID-19 waves. Correlation analyses showed moderate to strong correlation for Omicron sub-variants (Spearman's r = 0.7081 for BA.1, r = 0.7205 for BA.2, and r = 0.6042 for BA.5), and for WT (r = 0.8458) and Delta-sVNT (r = 0.8158), respectively. Comparison of the WT-sVNT performance with two CE-IVD kits, the "Icosagen SARS-CoV-2 Neutralizing Antibody ELISA kit" and the "Genscript cPass, kit" revealed an overall good correlation ranging from 0.8673 to -0.8773 and a midway profile between both commercial kits with 87.76% sensitivity and 90.48% clinical specificity. The BA.2-sVNT performance was similar to the BA.2 Genscript test. Finally, a correlation analysis revealed a strong association (r = 0.8583) between BA.5-sVNT and VNT sVNT using a double-vaccinated cohort (n = 100) and an Omicron-breakthrough infection cohort (n = 91). In conclusion, the sVNT allows for the efficient prediction of immune protection against the various VOCs.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Humanos , Pruebas de Neutralización , SARS-CoV-2 , Infección Irruptiva , Anticuerpos Antivirales
10.
Viruses ; 15(8)2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-37632005

RESUMEN

Conventional serum antibody titer, which expresses antibody level, does not provide antigen binding avidity of the variable region of the antibody, which is essential for the defense response to infection. Here, we quantified anti-SARS-CoV-2 antibody binding avidity to the receptor-binding domain (RBD) by competitive binding-inhibition activity (IC50) between SARS-CoV-2 S1 antigen immobilized on the DCP microarray and various RBD doses added to serum and expressed as 1/IC50 nM. The binding avidity analyzed under equilibrium conditions of antigen-antibody binding reaction is different from the avidity index measured with the chaotropic agent, such as urea, under nonequilibrium and short-time conditions. Quantitative determination of the infection-protection potential of antibodies was assessed by ABAT (antigen binding avidity antibody titer), which was calculated by the quantity (level) × quality (binding avidity) of antibodies. The binding avidity correlated strongly (r = 0.811) with cell-based virus-neutralizing activity. Maturation of the protective antibody induced by repeated vaccinations or SARS-CoV-2 infection was classified into three categories of ABAT, such as an initial, low, and high ABAT. Antibody maturity correlated with the clinical severity of COVID-19. Once a mature high binding avidity was achieved, it was maintained for at least 6-8 months regardless of the subsequent change in the antibody levels.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Anticuerpos Antivirales
11.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37373201

RESUMEN

The recent pandemic years have prompted the scientific community to increasingly search for and adopt new and more efficient therapeutic and diagnostic approaches to deal with a new infection. In addition to the development of vaccines, which has played a leading role in fighting the pandemic, the development of monoclonal antibodies has also represented a valid approach in the prevention and treatment of many cases of CoronaVirus Disease 2019 (COVID-19). Recently, we reported the development of a human antibody, named D3, showing neutralizing activity against different SARS-CoV-2 variants, wild-type, UK, Delta and Gamma variants. Here, we have further characterized with different methods D3's ability to bind the Omicron-derived recombinant RBD by comparing it with the antibodies Cilgavimab and Tixagevimab, recently approved for prophylactic use of COVID-19. We demonstrate here that D3 binds to a distinct epitope from that recognized by Cilgavimab and shows a different binding kinetic behavior. Furthermore, we report that the ability of D3 to bind the recombinant Omicron RBD domain in vitro results in a good ability to also neutralize Omicron-pseudotyped virus infection in ACE2-expressing cell cultures. We point out here that D3 mAb maintains a good ability to recognize both the wild-type and Omicron Spike proteins, either when used as recombinant purified proteins or when expressed on pseudoviral particles despite the different variants, making it particularly useful both from a therapeutic and diagnostic point of view. On the basis of these results, we propose to exploit this mAb for combinatorial treatments with other neutralizing mAbs to increase their therapeutic efficacy and for diagnostic use to measure the viral load in biological samples in the current and future pandemic waves of coronaviruses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes , Anticuerpos Antivirales/uso terapéutico
12.
Cell Chem Biol ; 30(7): 726-738.e4, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37354908

RESUMEN

Understanding the mechanisms of antibody-mediated neutralization of SARS-CoV-2 is critical in combating the COVID-19 pandemic. Based on previous reports of antibody catalysis, we investigated the proteolysis of spike (S) by antibodies in COVID-19 convalescent plasma (CCP) and its contribution to viral neutralization. Quenched fluorescent peptides were designed based on S epitopes to sensitively detect antibody-mediated proteolysis. We observed epitope cleavage by CCP from different donors which persisted when plasma was heat-treated or when IgG was isolated from plasma. Further, purified CCP antibodies proteolyzed recombinant S domains, as well as authentic viral S. Cleavage of S variants suggests CCP antibody-mediated proteolysis is a durable phenomenon despite antigenic drift. We differentiated viral neutralization occurring via direct interference with receptor binding from that occurring by antibody-mediated proteolysis, demonstrating that antibody catalysis enhanced neutralization. These results suggest that antibody-catalyzed damage of S is an immunologically relevant function of neutralizing antibodies against SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Proteolisis , Pandemias , COVID-19/terapia , Sueroterapia para COVID-19 , Glicoproteína de la Espiga del Coronavirus , Péptido Hidrolasas , Anticuerpos Neutralizantes , Epítopos , Anticuerpos Antivirales
13.
J Infect Dis ; 228(8): 1055-1059, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37280116

RESUMEN

BACKGROUND: We report spike protein-based lineage and AZD7442 (tixagevimab/cilgavimab) neutralizing activity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants identified from breakthrough infections in the PROVENT preexposure prophylaxis trial. METHODS: Variants identified from PROVENT participants with reverse-transcription polymerase chain reaction-positive symptomatic illness were phenotypically assessed to determine neutralization susceptibility of variant-specific pseudotyped virus-like particles. RESULTS: At completion of 6 months' follow-up, no AZD7442-resistant variants were observed in breakthrough coronavirus disease 2019 (COVID-19) cases. SARS-CoV-2 neutralizing antibody titers were similar in breakthrough and nonbreakthrough cases. CONCLUSIONS: Symptomatic COVID-19 breakthrough cases in PROVENT were not due to resistance-associated substitutions in AZD7442 binding sites or lack of AZD7442 exposure. CLINICAL TRIALS REGISTRATION: NCT04625725.


Asunto(s)
COVID-19 , Humanos , Anticuerpos Neutralizantes , COVID-19/prevención & control , SARS-CoV-2
14.
Front Immunol ; 14: 1055429, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845123

RESUMEN

Importance: The degree of immune protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants provided by infection versus vaccination with wild-type virus remains unresolved, which could influence future vaccine strategies. The gold-standard for assessing immune protection is viral neutralization; however, few studies involve a large-scale analysis of viral neutralization against the Omicron variant by sera from individuals infected with wild-type virus. Objectives: 1) To define the degree to which infection versus vaccination with wild-type SARS-CoV-2 induced neutralizing antibodies against Delta and Omicron variants.2) To determine whether clinically available data, such as infection/vaccination timing or antibody status, can predict variant neutralization. Methods: We examined a longitudinal cohort of 653 subjects with sera collected three times at 3-to-6-month intervals from April 2020 to June 2021. Individuals were categorized according to SARS-CoV-2 infection and vaccination status. Spike and nucleocapsid antibodies were detected via ADVIA Centaur® (Siemens) and Elecsys® (Roche) assays, respectively. The Healgen Scientific® lateral flow assay was used to detect IgG and IgM spike antibody responses. Pseudoviral neutralization assays were performed on all samples using human ACE2 receptor-expressing HEK-293T cells infected with SARS-CoV-2 spike protein pseudotyped lentiviral particles for wild-type (WT), B.1.617.2 (Delta), and B.1.1.529 (Omicron) variants. Results: Vaccination after infection led to the highest neutralization titers at all timepoints for all variants. Neutralization was also more durable in the setting of prior infection versus vaccination alone. Spike antibody clinical testing effectively predicted neutralization for wild-type and Delta. However, nucleocapsid antibody presence was the best independent predictor of Omicron neutralization. Neutralization of Omicron was lower than neutralization of either wild-type or Delta virus across all groups and timepoints, with significant activity only present in patients that were first infected and later immunized. Conclusions: Participants having both infection and vaccination with wild-type virus had the highest neutralizing antibody levels against all variants and had persistence of activity. Neutralization of WT and Delta virus correlated with spike antibody levels against wild-type and Delta variants, but Omicron neutralization was better correlated with evidence of prior infection. These data help explain why 'breakthrough' Omicron infections occurred in previously vaccinated individuals and suggest better protection is observed in those with both vaccination and previous infection. This study also supports the concept of future SARS-CoV-2 Omicron-specific vaccine boosters.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , Técnicas y Procedimientos Diagnósticos , Anticuerpos Neutralizantes , Infección Irruptiva , Vacunas contra la COVID-19 , Inmunoglobulina M , Prueba de COVID-19
15.
Mol Ther Nucleic Acids ; 31: 370-382, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36714461

RESUMEN

Since its discovery, COVID-19 has rapidly spread across the globe and has had a massive toll on human health, with infection mortality rates as high as 10%, and a crippling impact on the world economy. Despite numerous advances, there remains an urgent need for accurate and rapid point-of-care diagnostic tests and better therapeutic treatment options. To contribute chemically distinct, non-protein-based affinity reagents, we report here the identification of modified DNA-based aptamers that selectively bind to the S1, S2, or receptor-binding domain of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Several aptamers inhibit the binding of the spike protein to its cell-surface receptor angiotensin-converting enzyme 2 (ACE2) and neutralize authentic SARS-CoV-2 virus in vitro, including all variants of concern. With a high degree of nuclease resistance imparted by the base modifications, these reagents represent a new class of molecules with potential for further development as diagnostics or therapeutics.

16.
J Transl Autoimmun ; 5: 100175, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36447819

RESUMEN

Introduction: Viral infections have been implicated in the initiation of the autoimmune diseases. Recent reports suggest that a proportion of patients with COVID-19 develop severe disease with multiple organ injuries. We evaluated the relationship between COVID-19 severity, prevalence and persistence of antinuclear and other systemic and organ specific autoantibodies as well as SARS-CoV-2 infection specific anti-nucleocapsid (N) IgG antibodies and protective neutralizing antibody (Nab) levels. Methods: Samples from 119 COVID-19 patients categorized based on their level of care and 284 healthy subjects were tested for the presence and persistence of antinuclear and other systemic and organ specific autoantibodies as well as SARS-CoV-2 and neutralizing antibody levels. Results: The data shows significantly increased levels of anti RNP-A, anti-nucleocapsid and neutralizing antibody among patients receiving ICU care compared to non-ICU care. Furthermore, subjects receiving ICU care demonstrated significantly higher nucleocapsid IgG levels among the RNP-A positive cohort compared to RNP-A negative cohort. Notably, the expression of anti RNP-A antibodies is transient that reverts to non-reactive status between 20 and 60 days post symptom onset. Conclusions: COVID-19 patients in ICU care exhibit significantly higher levels of transient RNP-A autoantibodies, anti-nucleocapsid, and SARS-CoV-2 neutralizing antibodies compared to patients in non-ICU care.

17.
Microb Pathog ; 173(Pt A): 105839, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36265738

RESUMEN

A chimeric PCV called PCV1-3 with the immunogenic Cap gene of pathogenic PCV type 3(PCV3) cloned into the genomic skeleton of the nonpathogenic PCV1 was rescued and inoculated into PCV3 negative piglets. The results of fluorescence quantitative PCR showed that the PCV1-3 DNA detected in serum and tissues was negative. The pathogenicity of piglets showed that PCV 1-3 did not cause the clinical characteristics and pathological changes. The viral neutralization assay revealed that infected pigs could produce antibodies and neutralize the viral activity. All results showed that chimeric virus induced specific antibodies but with no pathogenic in pigs, which provided new candidate strains for the development of PCV3 vaccine.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Enfermedades de los Porcinos , Vacunas Virales , Porcinos , Animales , Vacunas Virales/genética , Anticuerpos Antivirales , Genómica , Infecciones por Circoviridae/prevención & control , Infecciones por Circoviridae/veterinaria
18.
Vaccines (Basel) ; 10(8)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36016216

RESUMEN

Hemodialysis patients are exposed to a markedly increased risk when infected with SARS-CoV-2. To date, it is unclear if hemodialysis patients benefit from four vaccinations. A total of 142 hemodialysis patients received four COVID-19 vaccinations until March 2022. RDB binding antibody titers were determined in a competitive surrogate neutralization assay. Vero-E6 cells were infected with SARS-CoV-2 variants of concern (VoC), Delta (B.1.617.2), or Omicron (B.1.1.529, sub-lineage BA.1) to determine serum infection neutralization capacity. Four weeks after the fourth vaccination, serum infection neutralization capacity significantly increased from a 50% inhibitory concentration (IC50, serum dilution factor 1:x) of 247.0 (46.3−1560.8) to 2560.0 (1174.0−2560.0) for the Delta VoC, and from 37.5 (20.0−198.8) to 668.5 (182.2−2560.0) for the Omicron VoC (each p < 0.001) compared to four months after the third vaccination. A significant increase in the neutralization capacity was even observed for patients with high antibody titers after three vaccinations (p < 0.001). Ten patients with SARS-CoV-2 breakthrough infection after the first blood sampling had by trend lower prior neutralization capacity for Omicron (p = 0.051). Our findings suggest that hemodialysis patients benefit from a fourth vaccination in particular in the light of the highly infectious SARS-CoV-2 Omicron-variants. A routinely applied four-time vaccination seems to broaden immunity against variants and would be recommended in hemodialysis patients.

19.
Front Immunol ; 13: 864775, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35603164

RESUMEN

The SARS-CoV-2 pandemic and particularly the emerging variants have deepened the need for widely available therapeutic options. We have demonstrated that hexamer-enhancing mutations in the Fc region of anti-SARS-CoV IgG antibodies lead to a noticeable improvement in IC50 in both pseudo and live virus neutralization assay compared to parental molecules. We also show that hexamer-enhancing mutants improve C1q binding to target surface. To our knowledge, this is the first time this format has been explored for application in viral neutralization and the studies provide proof-of-concept for the use of hexamer-enhanced IgG1 molecules as potential anti-viral therapeutics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Inmunoglobulina G/genética , Pruebas Inmunológicas , Pandemias , SARS-CoV-2/genética
20.
J Infect Dis ; 226(6): 983-994, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35543278

RESUMEN

BACKGROUND: Third coronavirus disease 2019 (COVID-19) vaccine doses are broadly recommended, but immunogenicity data remain limited, particularly in older adults. METHODS: We measured circulating antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain, ACE2 displacement, and virus neutralization against ancestral and omicron (BA.1) strains from prevaccine up to 1 month following the third dose, in 151 adults aged 24-98 years who received COVID-19 mRNA vaccines. RESULTS: Following 2 vaccine doses, humoral immunity was weaker, less functional, and less durable in older adults, where a higher number of chronic health conditions was a key correlate of weaker responses and poorer durability. One month after the third dose, antibody concentrations and function exceeded post-second-dose levels, and responses in older adults were comparable in magnitude to those in younger adults at this time. Humoral responses against omicron were universally weaker than against the ancestral strain after both the second and third doses. Nevertheless, after 3 doses, anti-omicron responses in older adults reached equivalence to those in younger adults. One month after 3 vaccine doses, the number of chronic health conditions, but not age, was the strongest consistent correlate of weaker humoral responses. CONCLUSIONS: Results underscore the immune benefits of third COVID-19 vaccine doses, particularly in older adults.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anciano , Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , ARN Mensajero , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas Sintéticas , Vacunas de ARNm
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA