Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Med Virol ; 96(3): e29489, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38402605

RESUMEN

Human astrovirus (HAstV) is a nonenveloped RNA virus and has been implicated in acute gastroenteritis among children and elderly. However, there exists a substantial dearth of information on HAstV strains circulating in Nigeria. Viral-like particles were purified from archived 254 stool samples of children with acute flaccid paralysis between January and December 2020 from five states in Nigeria, using the NetoVIR protocol. Extracted viral RNA and DNA were subjected to a reverse transcription step and subsequent random polymerase chain reaction amplification. Library preparation and Illumina sequencing were performed. Using the virome paired-end reads pipeline, raw reads were processed into genomic contigs. Phylogenetic and pairwise identity analysis of the recovered HAstV genomes was performed. Six near-complete genome sequences of HAstV were identified and classified as HAstV4 (n = 1), HAstV5 (n = 1), HAstV8 (n = 1), and MLB-3 (n = 3). The HAstV5 belonged to a yet unclassified sublineage, which we tentatively named HAstV-5d. Phylogenetic analysis of open reading frames 1a, 1b, and 2 suggested recombination events inside the MAstV1 species. Furthermore, phylogenetic analysis implied a geographic linkage between the HAstV5 strain from this study with two strains from Cameroon across all the genomic regions. We report for the first time the circulation of HAstV genotypes 4, 8, and MLB-3 in Nigeria and present data suggestive for the existence of a new sublineage of HAstV5. To further understand the burden, diversity, and evolution of HAstV, increased research interest as well as robust HAstV surveillance in Nigeria is essential.


Asunto(s)
Infecciones por Astroviridae , Mamastrovirus , Niño , Humanos , Anciano , Mamastrovirus/genética , Filogenia , Nigeria/epidemiología , Infecciones por Astroviridae/epidemiología , Heces , Genotipo
2.
Adv Sci (Weinh) ; 10(25): e2302159, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37382405

RESUMEN

DNA methylation plays a crucial role in the survival of bacteriophages (phages), yet the understanding of their genome methylation remains limited. In this study, DNA methylation patterns are analyzed in 8848 metagenome-assembled high-quality phages from 104 fecal samples using single-molecule real-time sequencing. The results demonstrate that 97.60% of gut phages exhibit methylation, with certain factors correlating with methylation densities. Phages with higher methylation densities appear to have potential viability advantages. Strikingly, more than one-third of the phages possess their own DNA methyltransferases (MTases). Increased MTase copies are associated with higher genome methylation densities, specific methylation motifs, and elevated prevalence of certain phage groups. Notably, the majority of these MTases share close homology with those encoded by gut bacteria, suggesting their exchange during phage-bacterium interactions. Furthermore, these MTases can be employed to accurately predict phage-host relationships. Overall, the findings indicate the widespread utilization of DNA methylation by gut DNA phages as an evasion mechanism against host defense systems, with a substantial contribution from phage-encoded MTases.


Asunto(s)
Bacteriófagos , Humanos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Metiltransferasas/genética , Metilación de ADN/genética , ADN , Metagenoma
3.
J Nanobiotechnology ; 20(1): 412, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109754

RESUMEN

Besides the broad development of nanotechnological approaches for cancer diagnosis and therapy, currently, there is no significant progress in the treatment of different types of brain tumors. Therapeutic molecules crossing the blood-brain barrier (BBB) and reaching an appropriate targeting ability remain the key challenges. Many invasive and non-invasive methods, and various types of nanocarriers and their hybrids have been widely explored for brain tumor treatment. However, unfortunately, no crucial clinical translations were observed to date. In particular, chemotherapy and surgery remain the main methods for the therapy of brain tumors. Exploring the mechanisms of the BBB penetration in detail and investigating advanced drug delivery platforms are the key factors that could bring us closer to understanding the development of effective therapy against brain tumors. In this review, we discuss the most relevant aspects of the BBB penetration mechanisms, observing both invasive and non-invasive methods of drug delivery. We also review the recent progress in the development of functional drug delivery platforms, from viruses to cell-based vehicles, for brain tumor therapy. The destructive potential of chemotherapeutic drugs delivered to the brain tumor is also considered. This review then summarizes the existing challenges and future prospects in the use of drug delivery platforms for the treatment of brain tumors.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Transporte Biológico , Encéfalo , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Humanos
4.
Nucleus (Calcutta) ; 64(2): 137-141, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248208

RESUMEN

Any disease that spreads quickly and crossed the geographical barrier is termed as pandemic. After the initial occurrence of Covid-19 from China, World Health Organization had declared novel corona viral outbreak as pandemic on March, 2020. Since then, COVID-19 continued to devastate people all around the world. Human civilization has witnessed one of its greatest crises by facing 180 million of confirmed cases with 38.9 lakh deaths across the world till end of June 2021. India alone contributes 30 million of positive cases and has lost 3.92 lakh valuable lives (data as on 24th of June 2021 from CSSEGIS and Data (http://github.com/CSSEGISandData/COVID-19); (the number increases in each day). Bio-medical experts from all around the world are working tirelessly to limit the disease and find potential cures for this viral infection. Vaccination is the most effective strategy to prevent the spread of any viral disease. Virologists have developed some effective vaccines, but production or supply lags far behind the present demand across the globe. Plant-derived vaccines (PDVs) based on modified virus like particles (VLPs) can be a feasible alternative in this case. A summarized account about the efficacy of the first plant-derived Covid 19 vaccine, CoVLP is discussed. PDVs and VLPs are also reviewed briefly, along with their benefits and drawbacks.

5.
Cell Rep ; 35(7): 109132, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34010651

RESUMEN

The human gut microbiome consists of bacteria, archaea, eukaryotes, and viruses. The gut viruses are relatively underexplored. Here, we longitudinally analyzed the gut virome composition in 11 healthy adults: its stability, variation, and the effect of a gluten-free diet. Using viral enrichment and a de novo assembly-based approach, we demonstrate the quantitative dynamics of the gut virome, including dsDNA, ssDNA, dsRNA, and ssRNA viruses. We observe highly divergent individual viral communities, carrying on an average 2,143 viral genomes, 13.1% of which were present at all 3 time points. In contrast to previous reports, the Siphoviridae family dominates over Microviridae in studied individual viromes. We also show individual viromes to be stable at the family level but to vary substantially at the genera and species levels. Finally, we demonstrate that lower initial diversity of the human gut virome leads to a more pronounced effect of the dietary intervention on its composition.


Asunto(s)
Dieta Sin Gluten/métodos , Microbioma Gastrointestinal/inmunología , Viroma/inmunología , Humanos
6.
Front Microbiol ; 11: 573759, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193180

RESUMEN

Successful inter-kingdom relationships are based upon a dynamic balance between defense and cooperation. A certain degree of competition is necessary to guarantee life spread and development. On the other hand, cooperation is a powerful tool to ensure a long lasting adaptation to changing environmental conditions and to support evolution to a higher level of complexity. Bacteria can interact with their (true or potential) parasites (i.e., phages) and with their multicellular hosts. In these model interactions, bacteria learnt how to cope with their inner and outer host, transforming dangerous signals into opportunities and modulating responses in order to achieve an agreement that is beneficial for the overall participants, thus giving rise to a more complex "organism" or ecosystem. In this review, particular attention will be addressed to underline the minimal energy expenditure required for these successful interactions [e.g., moonlighting proteins, post-translational modifications (PTMs), and multitasking signals] and the systemic vision of these processes and ways of life in which the system proves to be more than the sum of the single components. Using an inside-out perspective, I will examine the possibility of multilevel interactions, in which viruses help bacteria to cope with the animal host and bacteria support the human immune system to counteract viral infection in a circular vision. In this sophisticated network, bacteria represent the precious link that insures system stability with relative low energy expenditure.

7.
Rev. Hosp. Ital. B. Aires (2004) ; 40(2): 63-75, jun. 2020. graf, ilus, tab
Artículo en Español | LILACS | ID: biblio-1102739

RESUMEN

El objetivo de este artículo es proporcionar una guía que sirva para la interpretación y seguimiento de los esfuerzos que se están desarrollando en todo el mundo con el objetivo de obtener una vacuna que pueda generar inmunidad contra el nuevo coronavirus SARS-CoV-2 de 2019, el agente causante de la enfermedad por coronavirus denominada COVID-19. Cinco meses después de haber sido detectada la enfermedad, ya hay 102 vacunas en distintos estadios de desarrollo, registradas por la Organización Mundial de la Salud (OMS), correspondientes a 8 plataformas vacunales con diferentes estrategias, y todos los días aparecen nuevas. Esto representará un enorme desafío de organismos internacionales, para la evaluación, comparación y selección de aquellas que cumplan con los criterios regulatorios indispensables de seguridad y eficacia y que, por otro lado, puedan ser producidas en cantidades suficientes para abastecer la demanda mundial. (AU)


The objective of this article is to provide a guide to help the interpretation and monitoring the efforts that are being carried out worldwide to obtain a vaccine that will be able to generate immunity against the new 2019 SARS-CoV-2 coronavirus, the viral agent causes the disease named COVID-19. Five months after the disease was detected, there are already 102 vaccines at different stages of development, registered by World Health Organization (WHO), corresponding to 8 vaccination platforms base on different strategies, and every day new ones appear. This will represent a huge challenge for international organizations, to evaluate, compare and selects those that will meet the essential regulatory criteria of safety and efficacy and that, would be able to be produced in enough quantities to supply the worldwide demand. Key words: SARS-Cov-2 vaccine, vaccine platform, COVID-19 strategy, attenuated virus, viral vector, viral proteins, viral DNA, viral RNA, nucleic acids, viral like particles, WHO. (AU)


Asunto(s)
Humanos , Masculino , Femenino , Infecciones por Coronavirus/terapia , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Neumonía Viral/terapia , ADN/uso terapéutico , ARN/uso terapéutico , Vacunas/uso terapéutico , Ácidos Nucleicos/uso terapéutico , Proteína S/inmunología , Infecciones por Coronavirus/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Vectores de Enfermedades
8.
Int J Pept Res Ther ; 26(4): 2155-2167, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32421016

RESUMEN

Viral-like particles are assembled from capsid protein structural subunits of different viruses and have ability to establish research in biomedicals, like construction of novel safety vaccines, gene therapy vectors by delivering systems for nucleic acids, small biomolecules and diagnostics. Papaya Mosaic Viral nanoparticals can provide as a vaccine candidate helps to increase the immunity by fusing the epitope based peptide antigen. Capripox viruses are the genus comprises Lymphy skin-disease, Sheep and Goat pox Viruses are notified by The World Animal Health Organization (OIE) based on their economic impotence act as a transboundary animal diseases viruses of sheep, goat, and cattle's respectively. Plant viral based innovative vaccines have been emerged ineffective vaccine development. This research describes the engineering and development of a new vaccine candidate by display immunogenic peptide using the carrier capsid protein of Papaya Mosaic Virus. The Capripox virus P32 immunogenic protein is homologous of the vaccinia virus H3L gene displayed PapMV CP. The antigenicity of P32 protein epitope lowest score among epitopes C-terminally docked epitopes are EP6 > EP3 > EP8 as well the lowest score among epitopes N-terminally docked epitopes are EP8 > EP3 > EP6 presented on the N-terminus of PMV CP region which are found to be suitable for epitope display. And these modelled immunogenic peptide could be used to develop a viral like particles. Epitope based Antibody developed against immunogenic epitopic regions can contribute to a novel and robust protection from infection. As well might be used for developing cost effective detection kits for Transboundary animal disease viruses.

9.
Front Microbiol ; 10: 1112, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214129

RESUMEN

Aeolian dust exerts a considerable influence on atmospheric and oceanic conditions negatively impacting human health, particularly in arid and semi-arid regions like Saudi Arabia. Aeolian dust is often characterized by its mineral and chemical composition; however, there is a microbiological component of natural aerosols that has received comparatively little attention. Moreover, the amount of materials suspended in the atmosphere is highly variable from day to day. Thus, understanding the variability of atmospheric dust loads and suspended microbes throughout the year is essential to clarify the possible effects of dust on the Red Sea ecosystem. Here, we present the first estimates of dust and microbial loads at a coastal site on the Red Sea over a 2-year period, supplemented with measurements from dust samples collected along the Red Sea basin in offshore waters. Weekly average dust loads from a coastal site on the Red Sea ranged from 4.6 to 646.11 µg m-3, while the abundance of airborne prokaryotic cells and viral-like particles (VLPs) ranged from 77,967 to 1,203,792 cells m-3 and from 69,615 to 3,104,758 particles m-3, respectively. To the best of our knowledge, these are the first estimates of airborne microbial abundance in this region. The elevated concentrations of resuspended dust particles and suspended microbes found in the air indicate that airborne microbes may potentially have a large impact on human health and on the Red Sea ecosystem.

10.
Cells ; 8(6)2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31212706

RESUMEN

The translation of selenoprotein mRNAs involves a non-canonical ribosomal event in which an in-frame UGA is recoded as a selenocysteine (Sec) codon instead of being read as a stop codon. The recoding machinery is centered around two dedicated RNA components: The selenocysteine insertion sequence (SECIS) located in the 3' UTR of the mRNA and the selenocysteine-tRNA (Sec-tRNA[Ser]Sec). This translational UGA-selenocysteine recoding event by the ribosome is a limiting stage of selenoprotein expression. Its efficiency is controlled by the SECIS, the Sec-tRNA[Ser]Sec and their interacting protein partners. In the present work, we used a recently developed CRISPR strategy based on murine leukemia virus-like particles (VLPs) loaded with Cas9-sgRNA ribonucleoproteins to inactivate the Sec-tRNA[Ser]Sec gene in human cell lines. We showed that these CRISPR-Cas9-VLPs were able to induce efficient genome-editing in Hek293, HepG2, HaCaT, HAP1, HeLa, and LNCaP cell lines and this caused a robust reduction of selenoprotein expression. The alteration of selenoprotein expression was the direct consequence of lower levels of Sec-tRNA[Ser]Sec and thus a decrease in translational recoding efficiency of the ribosome. This novel strategy opens many possibilities to study the impact of selenoprotein deficiency in hard-to-transfect cells, since these CRISPR-Cas9-VLPs have a wide tropism.


Asunto(s)
Sistemas CRISPR-Cas/genética , Codón de Terminación/genética , ARN de Transferencia Aminoácido-Específico/genética , Ribosomas/metabolismo , Selenocisteína/metabolismo , Virión/metabolismo , Secuencia de Bases , Edición Génica , Células HEK293 , Células HeLa , Humanos , Mutación INDEL/genética , Conformación de Ácido Nucleico , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia Aminoácido-Específico/química , Selenio/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo
11.
PeerJ ; 6: e6079, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30588400

RESUMEN

BACKGROUND: A virus-like particle (VLP) is an excellent tool for a compound delivery system due to its simple composition, symmetrical structure and self-assembly. Its surface modification both chemically and genetically is established, leading to the target-specific delivery and improved encapsulation efficiency. However, its physical stabilities against many harsh conditions that guarantee long term storage and oral administration have been much less studied. METHODS: IHHNV-VLPs were reconstructed from recombinant IHHNV capsid protein in E. coli. Their physical properties against three strong physical conditions including long term storage (0-30 days) in 4 °C, physical stabilities against broad ranged pH (4-9) and against three types of digestive enzymes were tested. Disassembly and reassembly of VLPs for encapsidating an enhanced green fluorescent protein tagged plasmid DNA (EGFP-VLPs) were controlled by the use of reducing agent (DTT) and calcium specific chelating agent (EGTA). Lastly, delivering ability of EGFP-VLPs was performed in vivo by intramuscular injection and traced the expression of GFP in the shrimp tissues 24 hr post-injection. RESULTS: Upon its purification, IHHNV-VLPs were able to be kept at 4 °C up to 30 days with only slight degradation. They were very stable in basic condition (pH 8-9) and to a lesser extent in acidic condition (pH 4-6) while they could stand digestions of trypsin and chymotrypsin better than pepsin. As similar with many other non-enveloped viruses, the assembly of IHHNV-VLPs was dependent on both disulfide bridging and calcium ions which allowed us to control disassembly and reassembly of these VLPs to pack EGFP plasmid DNA. IHHNV-VLPs could deliver EGFP plasmids into shrimp muscles and gills as evident by RT-PCR and confocal microscopy demonstrating the expression of GFP in the targeted tissues. DISCUSSION: There are extensive data in which capsid proteins of the non-enveloped viruses in the form of VLPs are constructed and used as nano-containers for therapeutic compound delivery. However, the bottleneck of its application as an excellent delivery container for oral administration would rely solely on physical stability and interacting ability of VLPs to the host cells. These properties are retained for IHHNV-VLPs reported herein. Thus, IHHNV-VLPs would stand as a good applicable nanocontainer to carry therapeutic agents towards the targeting tissues against ionic and digestive conditions via oral administration in aquaculture field.

12.
Mol Ther Nucleic Acids ; 12: 453-462, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30195783

RESUMEN

The method of delivery of CRISPR-Cas9 into target cells is a strong determinant of efficacy and specificity in genome editing. Even though high efficiency of Cas9 delivery is necessary for optimal editing, its long-term and high levels of expression correlate with increased off-target activity. We developed vesicles (VEsiCas) carrying CRISPR-SpCas9 ribonucleoprotein complexes (RNPs) that are efficiently delivered into target cells through the fusogenic glycoprotein of the vesicular stomatitis virus (VSV-G). A crucial step for VEsiCas production is the synthesis of the single guide RNA (sgRNA) mediated by the T7 RNA polymerase in the cytoplasm of producing cells as opposed to canonical U6-driven Pol III nuclear transcription. In VEsiCas, the absence of DNA encoding SpCas9 and sgRNA allows rapid clearance of the nuclease components in target cells, which correlates with reduced genome-wide off-target cleavages. Compared with SpCas9 RNPs electroporation, which is currently the method of choice to obtain transient SpCas9 activity, VEsiCas deliver the nuclease with higher efficiency and lower toxicity. We show that a wide variety of cells can be edited through VEsiCas, including a variety of transformed cells, induced pluripotent stem cells (iPSCs), and cardiomyocytes, in vivo. VEsiCas is a traceless CRISPR-Cas9 delivery tool for efficient and safe genome editing that represents a further advancement toward the therapeutic use of the CRISPR-Cas9 technology.

13.
Methods Mol Biol ; 1838: 49-57, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30128989

RESUMEN

The human enteric virome consists of endogenous retro elements and viruses that infect the host and members of the gut microbiome (GM). Mounting evidence suggests that the gut virome plays a central role in maintaining homeostasis and via the GM influences immunology of the host. To thoroughly characterize the gut virome, it is often very useful to first separate and concentrate extracellular viral-like particles (eVLPs) enabling an integrative characterization of them. Here, we describe a detailed protocol for extraction and concentration of the viral fraction from fecal samples based on a polyethylene glycol precipitation (PEG) approach. These procedures maximize the yields of eVLPs (and their DNA) with high purity well suited for down-stream analysis such as quantification and morphological assessment, determination of phage-host pairs as well as virome sequencing.


Asunto(s)
Heces/virología , Microbioma Gastrointestinal , Metagenoma , Metagenómica , Virus/genética , Virus/aislamiento & purificación , Humanos , Metagenómica/métodos , Microscopía Fluorescente , Ultracentrifugación , Virus/ultraestructura
14.
Curr Ther Res Clin Exp ; 88: 8-17, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30093925

RESUMEN

BACKGROUND: Research on the biogenesis of tick-borne encephalitis virus (TBEV) would benefit gene therapy. Due to specific arrangements of genes along the TBEV genome, its viral-like particles (VLPs) could be exploited as shuttles to deliver their replicon, which carries therapeutic genes, to immune system cells. OBJECTIVE: To develop a flaviviral vector for gene delivery as a part of gene therapy research that can be expressed in secretable VLP suicidal shuttles and provide abundant unique molecular and structural data supporting this gene therapy concept. METHOD: TBEV structural gene constructs of a Swedish Torö strain were cloned into plasmids driven by the promoters CAG and CMV and then transfected into various cell lines, including COS-1 and BHK-21. Time-course sampling of the cells, culture fluid, cell lysate supernatant, and pellet specimens were performed. Western blotting and electron microscopy analyses of collected specimens were used to investigate molecular and structural processing of TBEV structural proteins. RESULTS: Western blotting analysis showed differences between promoters in directing the gene expression of the VLPs constructs. The premature flaviviral polypeptides as well as mature VLPs could be traced. Using electron microscopy, the premature and mature VLP accumulation in cellular compartments-and also endoplasmic reticulum proliferation as a virus factory platform-were observed in addition to secreted VLPs. CONCLUSIONS: The abundant virologic and cellular findings in this study show the natural processing and safety of inserting flaviviral structural genes into suicidal VLP shuttles. Thus, we propose that these VLPs are a suitable gene delivering system model in gene therapy.

15.
Vaccine ; 36(17): 2273-2281, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29576303

RESUMEN

Hepatitis C virus (HCV) infection is a major public health problem despite effectual direct-acting antivirals (DAAs) therapy. Development of a prophylactic vaccine is essential to block spread of HCV infection. The HBV small surface antigen (HBsAg-S) can self-assemble into virus-like particles (VLPs), has higher immunogenicity and is used as a vaccine against HBV infections. Chimeric HBsAg-S proteins with foreign epitopes allow VLP formation and induce the specific humoral and cellular immune responses against the foreign proteins. In this study, we investigated the immune responses induced by chimeric VLPs with HCV neutralizing epitopes and HBV S antigen in mice. The chimeric HCV-HBV VLPs expressing neutralizing epitopes were prepared and purified. BALB/c mice were immunized with purified chimeric VLPs and the serum neutralizing antibodies were analyzed. We found that these chimeric VLPs induced neutralizing antibodies against HCV in mice. Additionally, the murine serum neutralized infections with HCV pseudoparticles and cell-cultured viruses derived from different heterologous 1a, 1b and 2a genotypes. We also found that immunization with chimeric VLPs induced anti-HBsAg antibodies. This study provides a novel strategy for development of a HCV prophylactic neutralizing epitope vaccine and a HCV-HBV bivalent prophylactic vaccine.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Epítopos/inmunología , Hepacivirus/inmunología , Antígenos de Superficie de la Hepatitis B/inmunología , Virus de la Hepatitis B/inmunología , Animales , Células HEK293 , Hepatitis C/inmunología , Hepatitis C/prevención & control , Humanos , Inmunización/métodos , Ratones , Ratones Endogámicos BALB C , Proteínas del Envoltorio Viral/inmunología , Vacunas contra Hepatitis Viral/inmunología , Virión/inmunología
16.
Methods Mol Biol ; 1712: 163-173, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29224074

RESUMEN

The emergence of high-throughput sequencing technologies has deepened our understanding of complex microbial communities and greatly facilitated the study of as-yet uncultured microbes and viruses. Studies of complex microbial communities require high-quality data to generate valid results. Here, we detail current methods of microbial and viral community sample acquisition, DNA extraction, sample preparation, and sequencing on Illumina high-throughput platforms. While using appropriate analytical tools is important, it must not overshadow the need for establishing a proper experimental design and obtaining sufficient numbers of samples for statistical purposes. Researchers must also take care to sample biologically relevant sites and control for potential confounding factors (e.g., contamination).


Asunto(s)
Bacterias/genética , Microbiología Ambiental , Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota/genética , Manejo de Especímenes , Virus/genética , Animales , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , ADN Viral/genética , Humanos , Ratones , ARN Ribosómico 16S/genética
17.
Med J Armed Forces India ; 71(2): 171-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25859081

RESUMEN

HPV Vaccine was introduced to prevent cervical cancer known to be caused by infection with one or more of the high risk subtypes of the Human papilloma virus (HPV). Since introduction, trials have proven its efficacy in preventing Cervical intraepithelial neoplasia (CIN) beyond doubt and its effectiveness in preventing cervical cancer though presumptive is reasonably certain as per mathematical modelling. It also prevents other HPV related anogenital and oropharyngeal malignancies in both sexes. HPV vaccines have courted many controversies related to its efficacy, safety, ideal age of vaccination, use in HPV infected individuals and use in males. The currently available vaccines are based on L1 Viral like particles (VLP) and hence highly species specific, thermolabile, costly and are purely prophylactic. The quest for a cheaper, thermostable and broad spectrum vaccine has led to many newer prophylactic vaccines. Therapeutic vaccines were born out of the inescapable necessity considering high HPV related morbidity projected in the non HPV naïve population. Therapeutic vaccines would immediately reduce this burden and also help in the management of HPV related cancers alone or as part of combination strategies. Ongoing research is aimed at a total control over HPV related malignancies in the near future.

18.
Viruses ; 8(1)2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26729152

RESUMEN

The hand, foot and mouth disease is caused by a group of Enteroviruses such as Enterovirus 71 (EV-A71) and Coxsackievirus CV-A5, CV-A8, and CV-A16. Mild symptoms of EV-A71 infection in children range from high fever, vomiting, rashes and ulcers in mouth but can produce more severe symptoms such as brainstem and cerebellar encephalitis, leading up to cardiopulmonary failure and death. The lack of vaccines and antiviral drugs against EV-A71 highlights the urgency of developing preventive and treatment agents against EV-A71 to prevent further fatalities. Research groups have developed experimental inactivated vaccines, recombinant Viral Protein 1 (VP1) vaccine and virus-like particles (VLPs). The inactivated EV-A71 vaccine is considered the safest viral vaccine, as there will be no reversion to the infectious wild type strain. The recombinant VP1 vaccine is a cost-effective immunogen, while VLPs contain an arrangement of epitopes that can elicit neutralizing antibodies against the virus. As each type of vaccine has its advantages and disadvantages, increased studies are required in the development of such vaccines, whereby high efficacy, long-lasting immunity, minimal risk to those vaccinated, safe and easy production, low cost, dispensing the need for refrigeration and convenient delivery are the major goals in their design.


Asunto(s)
Infecciones por Coxsackievirus/inmunología , Enterovirus Humano A/inmunología , Vacunas Virales/inmunología , Animales , Infecciones por Coxsackievirus/prevención & control , Infecciones por Coxsackievirus/virología , Enterovirus Humano A/genética , Humanos , Vacunas Virales/genética
19.
Biomaterials ; 35(29): 8416-26, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24997480

RESUMEN

We have developed nanoparticles based on Murine Leukemia Virus virus-like-particles (VLPs) that efficiently deliver therapeutic bioactive proteins in their native state into target cells. Nuclear transcription factors and toxic proteins were incorporated into the VLPs from stable producer cells without transducing viral-encoded genetic material. Delivery of nuclear transcription factors required incorporation of nuclear export signals (NESs) into the vector backbone for the efficient formation of VLPs. In the presence of an appropriate targeting Env glycoprotein, transcription factors delivered and activated nuclear transcription in the target cells. Additionally, we show delivery of the bacterial toxin, MazF, which is an ACA-specific mRNA interferase resulted in the induction of cell death. The stable producer cells are protected from the toxin through co-expression of the anti-toxin MazE and continuously released MazF incorporating VLPs. This highly adaptable platform can be harnessed to alter and regulate cellular processes by bioactive protein delivery.


Asunto(s)
Toxinas Bacterianas/administración & dosificación , Núcleo Celular/genética , Vectores Genéticos/genética , Virus de la Leucemia Murina/genética , Factores de Transcripción/administración & dosificación , Virión/genética , Animales , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Vectores Genéticos/química , Células HEK293 , Humanos , Virus de la Leucemia Murina/química , Ratones , Señales de Exportación Nuclear , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Transducción Genética , Virión/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA