Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
mSystems ; 5(1)2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937673

RESUMEN

The study of complex ecological interactions, such as those among host, pathogen, and vector communities, can help to explain host ranges and the emergence of novel pathogens. We evaluated the viromes of papaya orchards, including weed and insect viromes, to identify common viruses in intensive production of papaya in the Pacific Coastal Plain and the Central Depression of Chiapas, Mexico. Samples of papaya cultivar Maradol, susceptible to papaya ringspot virus (PRSV), were categorized by symptoms by local farmers (papaya ringspot symptoms, non-PRSV symptoms, or asymptomatic). These analyses revealed the presence of 61 viruses, where only 4 species were shared among both regions, 16 showed homology to known viruses, and 36 were homologous with genera including Potyvirus, Comovirus, and Tombusvirus (RNA viruses) and Begomovirus and Mastrevirus (DNA viruses). We analyzed the network of associations between viruses and host-location combinations, revealing ecological properties of the network, such as an asymmetric nested pattern, and compared the observed network to null models of network association. Understanding the network structure informs management strategies, for example, revealing the potential role of PRSV in asymptomatic papaya and that weeds may be an important pathogen reservoir. We identify three key management implications: (i) each region may need a customized management strategy; (ii) visual assessment of papaya may be insufficient for PRSV, requiring diagnostic assays; and (iii) weed control within orchards may reduce the risk of virus spread to papaya. Network analysis advances understanding of host-pathogen interactions in the agroecological landscape.IMPORTANCE Virus-virus interactions in plants can modify host symptoms. As a result, disease management strategies may be unsuccessful if they are based solely on visual assessment and diagnostic assays for known individual viruses. Papaya ringspot virus is an important limiting factor for papaya production and likely has interactions with other viruses that are not yet known. Using high-throughput sequencing, we recovered known and novel RNA and DNA viruses from papaya orchards in Chiapas, Mexico, and categorized them by host and, in the case of papaya, symptom type: asymptomatic papaya, papaya with ringspot virus symptoms, papaya with nonringspot symptoms, weeds, and insects. Using network analysis, we demonstrated virus associations within and among host types and described the ecological community patterns. Recovery of viruses from weeds and asymptomatic papaya suggests the need for additional management attention. These analyses contribute to the understanding of the community structure of viruses in the agroecological landscape.

2.
Front Microbiol ; 10: 1014, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139164

RESUMEN

In Antarctic coastal waters where nutrient limitations are low, viruses are expected to play a major role in the regulation of bloom events. Despite this, research in viral identification and dynamics is scarce, with limited information available for the Southern Ocean (SO). This study presents an integrative-omics approach, comparing variation in the viral and microbial active communities on two contrasting sample conditions from a diatom-dominated phytoplankton bloom occurring in Chile Bay in the West Antarctic Peninsula (WAP) in the summer of 2014. The known viral community, initially dominated by Myoviridae family (∼82% of the total assigned reads), changed to become dominated by Phycodnaviridae (∼90%), while viral activity was predominantly driven by dsDNA members of the Phycodnaviridae (∼50%) and diatom infecting ssRNA viruses (∼38%), becoming more significant as chlorophyll a increased. A genomic and phylogenetic characterization allowed the identification of a new viral lineage within the Myoviridae family. This new lineage of viruses infects Pseudoalteromonas and was dominant in the phage community. In addition, a new Phycodnavirus (PaV) was described, which is predicted to infect Phaeocystis antarctica, the main blooming haptophyte in the SO. This work was able to identify the changes in the main viral players during a bloom development and suggests that the changes observed in the virioplankton could be used as a model to understand the development and decay of blooms that occur throughout the WAP.

3.
Emerg Infect Dis ; 23(6): 931-938, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28518030

RESUMEN

Vaccinia virus (VACV) is a zoonotic agent that causes a disease called bovine vaccinia, which is detected mainly in milking cattle and humans in close contact with these animals. Even though many aspects of VACV infection have been described, much is still unknown about its circulation in the environment and its natural hosts/reservoirs. To investigate the presence of Orthopoxvirus antibodies or VACV DNA, we captured small rodents and marsupials in 3 areas of Minas Gerais state, Brazil, and tested their samples in a laboratory. A total of 336 animals were tested; positivity ranged from 18.1% to 25.5% in the 3 studied regions located in different biomes, including the Atlantic Forest and the Cerrado. Analysis of nucleotide sequences indicated co-circulation of VACV groups I and II. Our findings reinforce the possible role played by rodents and marsupials in VACV maintenance and its transmission chain.


Asunto(s)
Anticuerpos Antivirales/sangre , Enfermedades de los Bovinos/epidemiología , ADN Viral/sangre , Brotes de Enfermedades , Marsupiales/virología , Roedores/virología , Vaccinia/epidemiología , Animales , Brasil/epidemiología , Bovinos , Enfermedades de los Bovinos/sangre , Enfermedades de los Bovinos/transmisión , Reservorios de Enfermedades/virología , Incidencia , Tipificación Molecular , Vaccinia/sangre , Vaccinia/transmisión , Vaccinia/veterinaria , Virus Vaccinia/clasificación , Virus Vaccinia/genética , Virus Vaccinia/patogenicidad
4.
Rev. Soc. Bras. Med. Trop ; Rev. Soc. Bras. Med. Trop;50(1): 3-8, Jan.-Feb. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-842821

RESUMEN

Abstract Emerging infectious diseases are a global threat. In countries like Brazil, where biodiversity is high and public health conditions in terms of infrastructure and medical care are often precarious, emerging diseases are particularly worrisome. The lack of monitoring strategies to identify pathogens with the potential to cause outbreaks or epidemics is another problem in Brazil and other developing countries. In this article, we present the history of the Sabiá virus (SABV), a pathogen that was described in the 1990s in Brazil. Several aspects of the biology and ecology of the SABV remain unknown. The SABV has the potential to cause hemorrhagic fever in humans. To date, four cases of human infections have been reported worldwide; two were naturally acquired (both in Brazil), whereas the other two were linked to occupational exposure in the laboratory environment (one in Brazil and one in the USA). In this review, we summarize the basic biological and ecological characteristics of the SABV. This is the first work to gather all available data on the historical aspects involving the cases of SABV infection along with an update on its characteristic features.


Asunto(s)
Humanos , Masculino , Adulto , Accidentes de Trabajo , Arenavirus del Nuevo Mundo , Fiebre Hemorrágica Americana/virología , Brasil , Personal de Laboratorio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA