Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain Struct Funct ; 229(5): 1121-1142, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38578351

RESUMEN

In mammals, the ventral respiratory column (VRC) plays a pivotal role in integrating neurochemically diverse inputs from brainstem and forebrain regions to generate respiratory motor patterns. VRC microinjection of the neuropeptide galanin has been reported to dampen carbon dioxide (CO2)-mediated chemoreflex responses. Additionally, we previously demonstrated that galaninergic neurons in the retrotrapezoid nucleus (RTN) are implicated in the adaptive response to hypercapnic stimuli, suggesting a link between RTN neuroplasticity and increased neuronal drive to the VRC. VRC neurons express galanin receptor 1, suggesting potential regulatory action by galanin, however, the precise galaninergic chemoreceptor-VRC circuitry remains to be determined. This study aimed to identify sources of galaninergic input to the VRC that contribute to central respiratory chemoreception. We employed a combination of retrograde neuronal tracing, in situ hybridisation and immunohistochemistry to investigate VRC-projecting neurons that synthesise galanin mRNA. In an additional series of experiments, we used acute hypercapnia exposure (10% CO2, 1 h) and c-Fos immunohistochemistry to ascertain which galaninergic nuclei projecting to the VRC are activated. Our findings reveal that a total of 30 brain nuclei and 51 subnuclei project to the VRC, with 12 of these containing galaninergic neurons, including the RTN. Among these galaninergic populations, only a subset of the RTN neurons (approximately 55%) exhibited activation in response to acute hypercapnia. Our findings highlight that the RTN is the likely source of galaninergic transmission to the VRC in response to hypercapnic stimuli.


Asunto(s)
Galanina , Hipercapnia , Neuronas , Animales , Hipercapnia/metabolismo , Hipercapnia/fisiopatología , Masculino , Galanina/metabolismo , Neuronas/metabolismo , Dióxido de Carbono/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Centro Respiratorio/metabolismo , Ratas , Células Quimiorreceptoras/metabolismo , Ratas Sprague-Dawley , Tronco Encefálico/metabolismo
2.
Respir Physiol Neurobiol ; 260: 37-52, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30502519

RESUMEN

Glutamate is the predominant excitatory neurotransmitter in the ventral respiratory column; however, the contribution of glutamatergic excitation in the individual subregions to respiratory rhythm generation has not been fully delineated. In an adult, in vivo, decerebrate rabbit model during conditions of mild hyperoxic hypercapnia we blocked glutamatergic excitation using the receptor antagonists 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) and d(-)-2-amino-5-phosphonopentanoic acid (AP5). Disfacilitation of the preBötzinger Complex caused a decrease in inspiratory and expiratory duration as well as peak phrenic amplitude and ultimately apnea. Disfacilitation of the Bötzinger Complex caused a decrease in inspiratory and expiratory duration; subsequent disfacilitation of the preBötzinger Complex resulted in complete loss of the respiratory pattern but maintained tonic inspiratory activity. We conclude that glutamatergic drive to the preBötzinger Complex is essential for respiratory rhythm generation. Glutamatergic drive to the Bötzinger Complex significantly affects inspiratory and expiratory phase duration. Bötzinger Complex neurons are responsible for maintaining the silent expiratory phase of the phrenic neurogram.


Asunto(s)
Ácido Glutámico/metabolismo , Neuronas/fisiología , Respiración , Centro Respiratorio/citología , Centro Respiratorio/fisiología , Mecánica Respiratoria/fisiología , Análisis de Varianza , Animales , Mapeo Encefálico , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Masculino , Microinyecciones , Neuronas/efectos de los fármacos , Periodicidad , Nervio Frénico , Conejos , Respiración/efectos de los fármacos , Centro Respiratorio/efectos de los fármacos , Mecánica Respiratoria/efectos de los fármacos
3.
Neurosci Res ; 143: 20-30, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29803764

RESUMEN

The ventral respiratory column (VRC) generates rhythmical respiration and is divided into four compartments: the Bötzinger complex (BC), pre-Bötzinger complex (PBC), rostral ventral respiratory group (rVRG), and caudal ventral respiratory group (cVRG). Serotonergic nerve fibers are densely distributed in the rostral to caudal VRC and serotonin would be one of the important modulators for the respiratory control in the VRC. In the present study, to elucidate detailed distribution of serotonergic neurons in raphe nuclei projecting to the various rostrocaudal levels of VRC, we performed combination of retrograde tracing technique by cholera toxin B subunit (CTB) with immunohistochemistry for tryptophan hydroxylase 2 (TPH2). The double-immunoreactive neurons with CTB and TPH2 were distributed in the both rostral and caudal raphe nuclei, i.e. dorsal raphe nucleus, raphe magnus nucleus, gigantocellular reticular nucleus alpha and ventral parts, lateral paragigantocellular nucleus, parapyramidal area, raphe obscurus nucleus, and raphe pallidus nucleus. The distributions of double-immunoreactive neurons were similar among injection groups of BC, PBC, anterior rVRG, and posterior rVRG/cVRG. In conclusion, serotonergic neurons in both rostral and caudal raphe nuclei projected throughout the VRC and these serotonergic projections may contribute to respiratory responses to various environmental and vital changes.


Asunto(s)
Núcleos del Rafe/anatomía & histología , Núcleos del Rafe/citología , Centro Respiratorio/anatomía & histología , Centro Respiratorio/citología , Neuronas Serotoninérgicas/citología , Animales , Toxina del Cólera/metabolismo , Masculino , Bulbo Raquídeo/anatomía & histología , Bulbo Raquídeo/citología , Bulbo Raquídeo/metabolismo , Vías Nerviosas , Técnicas de Trazados de Vías Neuroanatómicas , Núcleos del Rafe/metabolismo , Ratas , Ratas Wistar , Centro Respiratorio/metabolismo , Neuronas Serotoninérgicas/metabolismo , Serotonina/metabolismo , Triptófano Hidroxilasa/metabolismo
4.
J Neurophysiol ; 119(2): 401-412, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29070631

RESUMEN

Coordination of respiratory pump and valve muscle activity is essential for normal breathing. A hallmark respiratory response to hypercapnia and hypoxia is the emergence of active exhalation, characterized by abdominal muscle pumping during the late one-third of expiration (late-E phase). Late-E abdominal activity during hypercapnia has been attributed to the activation of expiratory neurons located within the parafacial respiratory group (pFRG). However, the mechanisms that control emergence of active exhalation, and its silencing in restful breathing, are not completely understood. We hypothesized that inputs from the Kölliker-Fuse nucleus (KF) control the emergence of late-E activity during hypercapnia. Previously, we reported that reversible inhibition of the KF reduced postinspiratory (post-I) motor output to laryngeal adductor muscles and brought forward the onset of hypercapnia-induced late-E abdominal activity. Here we explored the contribution of the KF for late-E abdominal recruitment during hypercapnia by pharmacologically disinhibiting the KF in in situ decerebrate arterially perfused rat preparations. These data were combined with previous results and incorporated into a computational model of the respiratory central pattern generator. Disinhibition of the KF through local parenchymal microinjections of gabazine (GABAA receptor antagonist) prolonged vagal post-I activity and inhibited late-E abdominal output during hypercapnia. In silico, we reproduced this behavior and predicted a mechanism in which the KF provides excitatory drive to post-I inhibitory neurons, which in turn inhibit late-E neurons of the pFRG. Although the exact mechanism proposed by the model requires testing, our data confirm that the KF modulates the formation of late-E abdominal activity during hypercapnia. NEW & NOTEWORTHY The pons is essential for the formation of the three-phase respiratory pattern, controlling the inspiratory-expiratory phase transition. We provide functional evidence of a novel role for the Kölliker-Fuse nucleus (KF) controlling the emergence of abdominal expiratory bursts during active expiration. A computational model of the respiratory central pattern generator predicts a possible mechanism by which the KF interacts indirectly with the parafacial respiratory group and exerts an inhibitory effect on the expiratory conditional oscillator.


Asunto(s)
Hipercapnia/fisiopatología , Núcleo de Kölliker-Fuse/fisiología , Nervios Periféricos/fisiología , Respiración , Animales , Generadores de Patrones Centrales/fisiología , Potenciales Evocados Motores , Núcleo de Kölliker-Fuse/fisiopatología , Masculino , Modelos Neurológicos , Nervios Periféricos/fisiopatología , Ratas , Ratas Wistar , Músculos Respiratorios/inervación
5.
Respir Physiol Neurobiol ; 239: 10-25, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28137700

RESUMEN

Pulmonary ventilation (V̇I) in awake and sleeping goats does not change when antagonists to several excitatory G protein-coupled receptors are dialyzed unilaterally into the ventral respiratory column (VRC). Concomitant changes in excitatory neuromodulators in the effluent mock cerebral spinal fluid (mCSF) suggest neuromodulatory compensation. Herein, we studied neuromodulatory compensation during dialysis of agonists to inhibitory G protein-coupled or ionotropic receptors into the VRC. Microtubules were implanted into the VRC of goats for dialysis of mCSF mixed with agonists to either µ-opioid (DAMGO) or GABAA (muscimol) receptors. We found: (1) V̇I decreased during unilateral but increased during bilateral dialysis of DAMGO, (2) dialyses of DAMGO destabilized breathing, (3) unilateral dialysis of muscimol increased V̇I, and (4) dialysis of DAMGO decreased GABA in the effluent mCSF. We conclude: (1) neuromodulatory compensation can occur during altered inhibitory neuromodulator receptor activity, and (2) the mechanism of compensation differs between G protein-coupled excitatory and inhibitory receptors and between G protein-coupled and inotropic inhibitory receptors.


Asunto(s)
Analgésicos Opioides/farmacología , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Agonistas de Receptores de GABA-A/farmacología , Muscimol/farmacología , Respiración/efectos de los fármacos , Centro Respiratorio/efectos de los fármacos , Animales , Diálisis/métodos , Relación Dosis-Respuesta a Droga , Femenino , Lateralidad Funcional/efectos de los fármacos , Cabras , Neurotransmisores/metabolismo , Centro Respiratorio/fisiología , Sueño/efectos de los fármacos , Vigilia/efectos de los fármacos
6.
J Appl Physiol (1985) ; 122(2): 327-338, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27687562

RESUMEN

Unilateral dialysis of the broad-spectrum muscarinic receptor antagonist atropine (50 mM) into the ventral respiratory column [(VRC) including the pre-Bötzinger complex region] of awake goats increased pulmonary ventilation (V̇i) and breathing frequency (f), conceivably due to local compensatory increases in serotonin (5-HT) and substance P (SP) measured in effluent mock cerebral spinal fluid (mCSF). In contrast, unilateral dialysis of a triple cocktail of antagonists to muscarinic (atropine; 5 mM), neurokinin-1, and 5-HT receptors does not alter V̇i or f, but increases local SP. Herein, we tested hypotheses that 1) local compensatory 5-HT and SP responses to 50 mM atropine dialyzed into the VRC of goats will not differ between anesthetized and awake states; and 2) bilateral dialysis of the triple cocktail of antagonists into the VRC of awake goats will not alter V̇i or f, but will increase local excitatory neuromodulators. Through microtubules implanted into the VRC of goats, probes were inserted to dialyze mCSF alone (time control), 50 mM atropine, or the triple cocktail of antagonists. We found 1) equivalent increases in local 5-HT and SP with 50 mM atropine dialysis during wakefulness compared with isoflurane anesthesia, but V̇i and f only increased while awake; and 2) dialyses of the triple cocktail of antagonists increased V̇i, f, 5-HT, and SP (<0.05) during both day and night studies. We conclude that the mechanisms governing local neuromodulator levels are state independent, and that bilateral excitatory receptor blockade elicits an increase in breathing, presumably due to a local, (over)compensatory neuromodulator response.NEW & NOTEWORTHY The two major findings are as follows: 1) during unilateral dialysis of 50 mM atropine into the ventral respiratory column to block excitatory muscarinic receptor activity, a compensatory increase in other neuromodulators was state independent, but the ventilatory response appears to be state dependent; and 2) the hypothesis that absence of decreased V̇i and f during unilateral dialysis of excitatory receptor antagonists was due to compensation by the contralateral VRC was not supported by findings herein.


Asunto(s)
Neurotransmisores/farmacología , Ventilación Pulmonar/efectos de los fármacos , Receptores de Neurotransmisores/antagonistas & inhibidores , Receptores de Neurotransmisores/metabolismo , Centro Respiratorio/efectos de los fármacos , Centro Respiratorio/metabolismo , Animales , Atropina/farmacología , Líquido Cefalorraquídeo/efectos de los fármacos , Líquido Cefalorraquídeo/metabolismo , Líquido Cefalorraquídeo/fisiología , Femenino , Cabras , Microdiálisis/métodos , Antagonistas Muscarínicos/farmacología , Receptores Muscarínicos/metabolismo , Receptores de Serotonina/metabolismo , Respiración/efectos de los fármacos , Mecánica Respiratoria/efectos de los fármacos , Serotonina/metabolismo , Sueño/efectos de los fármacos , Sueño/fisiología , Sustancia P/metabolismo , Vigilia/efectos de los fármacos
7.
J Neurophysiol ; 113(1): 352-68, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25343784

RESUMEN

Models of brain stem ventral respiratory column (VRC) circuits typically emphasize populations of neurons, each active during a particular phase of the respiratory cycle. We have proposed that "tonic" pericolumnar expiratory (t-E) neurons tune breathing during baroreceptor-evoked reductions and central chemoreceptor-evoked enhancements of inspiratory (I) drive. The aims of this study were to further characterize the coordinated activity of t-E neurons and test the hypothesis that peripheral chemoreceptors also modulate drive via inhibition of t-E neurons and disinhibition of their inspiratory neuron targets. Spike trains of 828 VRC neurons were acquired by multielectrode arrays along with phrenic nerve signals from 22 decerebrate, vagotomized, neuromuscularly blocked, artificially ventilated adult cats. Forty-eight of 191 t-E neurons fired synchronously with another t-E neuron as indicated by cross-correlogram central peaks; 32 of the 39 synchronous pairs were elements of groups with mutual pairwise correlations. Gravitational clustering identified fluctuations in t-E neuron synchrony. A network model supported the prediction that inhibitory populations with spike synchrony reduce target neuron firing probabilities, resulting in offset or central correlogram troughs. In five animals, stimulation of carotid chemoreceptors evoked changes in the firing rates of 179 of 240 neurons. Thirty-two neuron pairs had correlogram troughs consistent with convergent and divergent t-E inhibition of I cells and disinhibitory enhancement of drive. Four of 10 t-E neurons that responded to sequential stimulation of peripheral and central chemoreceptors triggered 25 cross-correlograms with offset features. The results support the hypothesis that multiple afferent systems dynamically tune inspiratory drive in part via coordinated t-E neurons.


Asunto(s)
Células Quimiorreceptoras/fisiología , Inhalación/fisiología , Bulbo Raquídeo/fisiología , Neuronas/fisiología , Potenciales de Acción , Animales , Arterias Carótidas/fisiología , Gatos , Microelectrodos , Modelos Neurológicos , Inhibición Neural/fisiología , Nervio Frénico/fisiología , Probabilidad , Respiración Artificial , Vagotomía
8.
Neuroscience ; 255: 158-76, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24120555

RESUMEN

Clinical stimulation of preterm infant breathing with methylxanthines like caffeine and theophylline can evoke seizures. It is unknown whether underlying neuronal hyperexcitability involves the rhythmogenic inspiratory active pre-Bötzinger complex (preBötC) in the brainstem or preBötC-driven motor networks. Inspiratory-related preBötC interneuronal plus spinal (cervical/phrenic) or cranial hypoglossal (XII) motoneuronal bursting was studied in newborn rat en bloc brainstem-spinal cords and brainstem slices, respectively. Non-respiratory bursting perturbed inspiratory cervical nerve activity in en bloc models at >0.25mM theophylline or caffeine. Rhythm in the exposed preBötC of transected en bloc preparations was less perturbed by 10mM theophylline than cervical root bursting which was more affected than phrenic nerve activity. In the preBötC of slices, even 10mM methylxanthine did not evoke seizure-like bursting whereas >1mM masked XII rhythm via large amplitude 1-10Hz oscillations. Blocking A-type γ-aminobutyric (GABAA) receptors evoked seizure-like cervical activity whereas in slices neither XII nor preBötC rhythm was disrupted. Methylxanthines (2.5-10mM), but not blockade of adenosine receptors, phosphodiesterase-4 or the sarcoplasmatic/endoplasmatic reticulum ATPase countered inspiratory depression by muscimol-evoked GABAA receptor activation that was associated with a hyperpolarization and input resistance decrease silencing preBötC neurons in slices. The latter blockers did neither affect preBötC or cranial/spinal motor network bursting nor evoke seizure-like activity or mask corresponding methylxanthine-evoked discharges. Our findings show that methylxanthine-evoked hyperexcitability originates from motor networks, leaving preBötC activity largely unaffected, and suggest that GABAA receptors contribute to methylxanthine-evoked seizure-like perturbation of spinal motoneurons whereas non-respiratory XII motoneuron oscillations are of different origin.


Asunto(s)
Inhalación/fisiología , Interneuronas/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Centro Respiratorio/efectos de los fármacos , Xantinas/efectos adversos , Animales , Cafeína/efectos adversos , Interneuronas/metabolismo , Neuronas Motoras/metabolismo , Vías Nerviosas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptores de GABA-A/metabolismo , Centro Respiratorio/metabolismo , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Convulsiones/fisiopatología , Teofilina/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA