Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 25(8): 3187-3201, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048750

RESUMEN

Viruses have developed various strategies to ensure their survival and transmission. One intriguing strategy involves manipulating the behavior of infected arthropod vectors and hosts. Through intricate interactions, viruses can modify vector behavior, aiding in crossing barriers and improving transmission to new hosts. This manipulation may include altering vector feeding preferences, thus promoting virus transmission to susceptible individuals. In addition, viruses employ diverse dissemination methods, including cell-to-cell and intercellular transmission via extracellular vesicles. These strategies allow viruses to establish themselves in favorable environments, optimize replication, and increase the likelihood of spreading to other individuals. Understanding these complex viral strategies offers valuable insights into their biology, transmission dynamics, and potential interventions for controlling infections. Unraveling interactions between viruses, hosts, and vectors enables the development of targeted approaches to effectively mitigate viral diseases and prevent transmission.


Asunto(s)
Virosis , Animales , Humanos , Virosis/transmisión , Virosis/prevención & control , Virosis/virología , Virus , Vectores Artrópodos/virología , Interacciones Huésped-Patógeno , Vesículas Extracelulares/virología , Replicación Viral
2.
Ecology ; 104(4): e3970, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36576452

RESUMEN

Pathogen transmission mode is a key determinant of epidemiological outcomes. Theory shows that host density can influence the spread of pathogens differentially depending on their mode of transmission. Host density could therefore play an important role in determining the pathogen transmission mode. We tested theoretical expectations using floral arrays of the alpine carnation Dianthus pavonius in field experiments of spore dispersal of the anther-smut fungus, Microbotryum, by vector (pollinator)-based floral transmission and passive aerial transmission at a range of host densities. Pollinators deposited fewer spores per plant at high host density than at lower density (ranging from a 0.2-2 m spacing between plants), and vector-based spore deposition at higher densities declined more steeply with distance from diseased plant sources. In contrast, while aerial spore deposition declined with distance from the diseased source, the steepness of this decline was independent of host density. Our study indicates that the amount and distance of vector-based transmission are likely to be a nonmonotonic function of host density as a result of vector behavior, which is not readily encapsulated by fixed dispersal functions. We conclude that the spatial spread of pathogens by vectors is likely to be greater at lower and intermediate densities, whereas the spatial spread of aerially transmitted pathogens would be greater at high densities. These contrasting patterns could lead to differential importance of each transmission mode in terms of its contribution to subsequent infections across host densities.


Asunto(s)
Basidiomycota , Dianthus , Reproducción , Dianthus/microbiología , Plantas , Enfermedades de las Plantas
3.
BMC Genomics ; 23(1): 333, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35488202

RESUMEN

BACKGROUND: Poleroviruses, such as turnip yellows virus (TuYV), are plant viruses strictly transmitted by aphids in a persistent and circulative manner. Acquisition of either virus particles or plant material altered by virus infection is expected to induce gene expression deregulation in aphids which may ultimately alter their behavior. RESULTS: By conducting an RNA-Seq analysis on viruliferous aphids fed either on TuYV-infected plants or on an artificial medium containing purified virus particles, we identified several hundreds of genes deregulated in Myzus persicae, despite non-replication of the virus in the vector. Only a few genes linked to receptor activities and/or vesicular transport were common between the two modes of acquisition with, however, a low level of deregulation. Behavioral studies on aphids after virus acquisition showed that M. persicae locomotion behavior was affected by feeding on TuYV-infected plants, but not by feeding on the artificial medium containing the purified virus particles. Consistent with this, genes potentially involved in aphid behavior were deregulated in aphids fed on infected plants, but not on the artificial medium. CONCLUSIONS: These data show that TuYV particles acquisition alone is associated with a moderate deregulation of a few genes, while higher gene deregulation is associated with aphid ingestion of phloem from TuYV-infected plants. Our data are also in favor of a major role of infected plant components on aphid behavior.


Asunto(s)
Áfidos , Brassica napus , Luteoviridae , Virus de Plantas , Animales , Áfidos/fisiología , Virus ADN , Expresión Génica , Luteoviridae/fisiología , Enfermedades de las Plantas , Virus de Plantas/fisiología
4.
Parasit Vectors ; 15(1): 88, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35292106

RESUMEN

Despite the eradication of malaria across most European countries in the 1960s and 1970s, the anopheline vectors are still present. Most of the malaria cases that have been reported in Europe up to the present time have been infections acquired in endemic areas by travelers. However, the possibility of acquiring malaria by locally infected mosquitoes has been poorly investigated in Europe, despite autochthonous malaria cases having been occasionally reported in several European countries. Here we present an update on the occurrence of potential malaria vector species in Europe. Adopting a systematic review approach, we selected 288 papers published between 2000 and 2021 for inclusion in the review based on retrieval of accurate information on the following Anopheles species: An. atroparvus, An. hyrcanus sensu lato (s.l.), An. labranchiae, An. maculipennis sensu stricto (s.s.), An. messeae/daciae, An. sacharovi, An. superpictus and An. plumbeus. The distribution of these potential vector species across Europe is critically reviewed in relation to areas of major presence and principal bionomic features, including vector competence to Plasmodium. Additional information, such as geographical details, sampling approaches and species identification methods, are also reported. We compare the information on each species extracted from the most recent studies to comparable information reported from studies published in the early 2000s, with particular reference to the role of each species in malaria transmission before eradication. The picture that emerges from this review is that potential vector species are still widespread in Europe, with the largest diversity in the Mediterranean area, Italy in particular. Despite information on their vectorial capacity being fragmentary, the information retrieved suggests a re-definition of the relative importance of potential vector species, indicating An. hyrcanus s.l., An. labranchiae, An. plumbeus and An. sacharovi as potential vectors of higher importance, while An. messeae/daciae and An. maculipennis s.s. can be considered to be moderately important species. In contrast, An. atroparvus and An. superpictus should be considered as vectors of lower importance, particularly in relation to their low anthropophily. The presence of gaps in current knowledge of vectorial systems in Europe becomes evident in this review, not only in terms of vector competence but also in the definition of sampling approaches, highlighting the need for further research to adopt the appropriate surveillance system for each species.


Asunto(s)
Anopheles , Malaria , Animales , Ecología , Europa (Continente)/epidemiología , Malaria/epidemiología , Malaria/prevención & control , Mosquitos Vectores
5.
Bull Math Biol ; 84(1): 22, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34940929

RESUMEN

Vector-borne diseases are a serious public health problem, mosquitoes being one of the most important vectors. To analyze the dynamics of this type of disease, Ross-Macdonald models are commonly used. In its simplest formulation and the most common in scientific literature, it is assumed that all mosquitoes are biting at a given rate. To improve this general assumption, we developed a vector-borne disease model with active and inactive vectors as a simple way to incorporate the more general characteristics of mosquito feeding behavior into disease dynamics. Our objective is to obtain an estimate of the Ross-Macdonald biting rate from the feeding parameters that reproduce the same dynamics as the model with active and inactive vectors. Two different cases were analyzed: a SIS-SI model and a SIR-SI model with a single epidemic. Different methods to estimate the biting rate in the Ross-Macdonald model were proposed and analyzed. To compare the results of the models, different epidemiological indicators were considered. When the biting rate is estimated considering that both models have the same basic reproduction number, very similar disease dynamics are obtained. This method is a simple way to incorporate the mosquito feeding behavior into the standard Ross-Macdonald model.


Asunto(s)
Mosquitos Vectores , Enfermedades Transmitidas por Vectores , Animales , Número Básico de Reproducción , Conducta Alimentaria , Conceptos Matemáticos , Modelos Biológicos , Enfermedades Transmitidas por Vectores/epidemiología , Enfermedades Transmitidas por Vectores/prevención & control
6.
Parasit Vectors ; 14(1): 357, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34233742

RESUMEN

BACKGROUND: A small number of human cases of the zoonotic malaria Plasmodium knowlesi have been reported in Palawan Island, the Philippines. Identification of potential vector species and their bionomics is crucial for understanding human exposure risk in this setting. Here, we combined longitudinal surveillance with a trap-evaluation study to address knowledge gaps about the ecology and potential for zoonotic spillover of this macaque malaria in Palawan Island. METHODS: The abundance, diversity and biting behavior of human-biting Anopheles mosquitoes were assessed through monthly outdoor human landing catches (HLC) in three ecotypes representing different land use (forest edge, forest and agricultural area) across 8 months. Additionally, the host preference and biting activity of potential Anopheles vectors were assessed through comparison of their abundance and capture time in traps baited with humans (HLC, human-baited electrocuting net-HEN) or macaques (monkey-baited trap-MBT, monkey-baited electrocuting net-MEN). All female Anopheles mosquitoes were tested for the presence of Plasmodium parasites by PCR. RESULTS: Previously incriminated vectors Anopheles balabacensis and An. flavirostris accounted for > 95% of anophelines caught in longitudinal surveillance. However, human biting densities were relatively low (An. balabacensis: 0.34-1.20 per night, An. flavirostris: 0-2 bites per night). Biting densities of An. balabacensis were highest in the forest edge, while An. flavirostris was most abundant in the agricultural area. The abundance of An. balabacensis and An. flavirostris was significantly higher in HLC than in MBT. None of the 357 female Anopheles mosquitoes tested for Plasmodium infection were positive. CONCLUSIONS: The relatively low density and lack of malaria infection in Anopheles mosquitoes sampled here indicates that exposure to P. knowlesi in this setting is considerably lower than in neighboring countries (i.e. Malaysia), where it is now the primary cause of malaria in humans. Although anophelines had lower abundance in MBTs than in HLCs, An. balabacensis and An. flavirostris were caught by both methods, suggesting they could act as bridge vectors between humans and macaques. These species bite primarily outdoors during the early evening, confirming that insecticide-treated nets are unlikely to provide protection against P. knowlesi vectors.


Asunto(s)
Anopheles/fisiología , Anopheles/parasitología , Conducta Animal , Mordeduras y Picaduras , Mosquitos Vectores/parasitología , Plasmodium knowlesi/genética , Estaciones del Año , Animales , Femenino , Humanos , Estudios Longitudinales , Macaca , Malaria/transmisión , Mosquitos Vectores/fisiología , Filipinas , Plasmodium knowlesi/aislamiento & purificación
7.
J Econ Entomol ; 114(3): 1081-1090, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33822114

RESUMEN

The leafhopper (Matsumuratettix hiroglyphicus (Matsumura) (Hemiptera: Cicadellidae)) is a crucial insect vector of the phytoplasma associated with sugarcane white leaf (SCWL) disease. The aim of this study was to compare the stylet probing behaviors of M. hiroglyphicus on healthy sugarcane plants, asymptomatic, and symptomatic SCWL-infected sugarcane plants, using DC electropenetrography. We also used host-selection preference (free-choice) assays to identify the preferred types of host plants, and scanning electron microscopy to observe stylet puncture holes and salivary flanges after leafhopper probing. According to a quantitative analysis of M. hiroglyphicus stylet probing, mean durations per insect of both phloem ingestion (waveform D; the phytoplasma-acquisition behavior) and phloem salivation (waveform C; the phytoplasma-inoculation behavior) were significantly longer on both types of infected sugarcane than on healthy plants. These longer overall durations were mainly because the same number of significantly longer-duration C and D events was performed on infected sugarcane compared with healthy plants. On free-choice tested plants, M. hiroglyphicus displayed a significantly greater preference to settle on the infected plants (both types) than the healthy sugarcane. These results provide the first empirical evidence that acquiring the SCWL phytoplasma alters the host selection and stylet probing behaviors of its main vector (M. hiroglyphicus). Our study thus contributes to a better understanding of the interactions between the insect vector and SCWL phytoplasma-infected plants, and will aid in developing novel disease management tactics for sugarcane.


Asunto(s)
Hemípteros , Phytoplasma , Saccharum , Animales , Enfermedades de las Plantas , Hojas de la Planta
8.
J Infect Dis ; 223(12 Suppl 2): S61-S80, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33906221

RESUMEN

Residual malaria transmission is the actual maintained inoculation of Plasmodium, in spite of a well-designed and implemented vector control programs, and is of great concern for malaria elimination. Residual malaria transmission occurs under several possible circumstances, among which the presence of exophilic vector species, such as Anopheles dirus, or indoor- and outdoor-biting vectors, such as Anopheles nili, or specific behavior, such as feeding on humans indoors, then resting or leaving the house the same night (such as Anopheles moucheti) or also changes in behavior induced by insecticides applied inside houses, such as the well-known deterrent effect of permethrin-treated nets or the irritant effect of DDT. The use of insecticides may change the composition of local Anopheles populations, such as A. arabiensis taking up the place of A. gambiae in Senegal, A. aquasalis replacing A. darlingi in Guyana, or A. harrisoni superseding A. minimus in Vietnam. The change in behavior, such as biting activity earlier than usually reported-for example, Anopheles funestus after a large-scale distribution of long-lasting insecticidal nets-or insecticide resistance, in particular the current spread of pyrethroid resistance, could hamper the efficacy of classic pyrethroid-treated long-lasting insecticidal nets and maintained transmission. These issues must be well documented in every situation to elaborate, implement, monitor, and evaluate tailored vector control programs, keeping in mind that they must be conceived as integrated programs with several well and appropriately coordinated approaches, combining entomological but also parasitological, clinical, and social methods and analyses. A successful integrated vector control program must then be designed to reduce transmission and incidence rates of malaria morbidity and overall mortality.


Asunto(s)
Anopheles/fisiología , Mordeduras y Picaduras de Insectos/prevención & control , Insecticidas/farmacología , Malaria/prevención & control , Control de Mosquitos/métodos , Animales , Anopheles/efectos de los fármacos , Humanos , Resistencia a los Insecticidas/efectos de los fármacos , Mosquiteros Tratados con Insecticida , Malaria/transmisión , Mosquitos Vectores , Piretrinas/uso terapéutico
9.
Acta Trop ; 216: 105837, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33485868

RESUMEN

Ethiopia has shown a notable progress in reducing malaria burden over the past decade, mainly due to the scaleup of vector control interventions such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). Based on the progress, the country has set goals to eliminate malaria by 2030. However, residual malaria transmission due to early evening and outdoor biting vectors could pose a challenge to malaria elimination efforts. This study assessed vector behavior, patterns of human exposure to vector bites and residual malaria transmission in southwestern Ethiopia. Anopheles mosquitoes were collected monthly from January to December 2018 using human landing catches (HLCs), human-baited double net traps, CDC light traps and pyrethrum spray catches. Human behavior data were collected using questionnaire to estimate the magnitude of human exposure to mosquito bites occurring indoors and outdoors at various times of the night. Enzyme-linked immunosorbent assay (ELISA) was used to determine mosquito blood meal sources and sporozoite infections. A total of 2,038 female Anopheles mosquitoes comprising Anopheles arabiensis (30.8%), An. pharoensis (40.5%), An. coustani (28.1%), An. squamosus (0.3%) and An. funestus group (0.2%) were collected. Anopheles arabiensis and An. pharoensis were 2.4 and 2.5 times more likely to seek hosts outdoors than indoors, respectively. However, 66% of human exposure to An. arabiensis and 39% of exposure to An. pharoensis bites occurred indoors for LLIN non-users. For LLIN users, 75% of residual exposure to An. arabiensis bites occurred outdoors while 23% occurred indoors before bed time. Likewise, 84% of residual exposure to An. pharoensis bites occurred outdoors while 15% occurred indoors before people retired to bed. Anopheles arabiensis and An. pharoensis were 4.1 and 4.8 times more likely to feed on bovine than humans, respectively. Based on the HLC, an estimated indoor and outdoor EIR of An. arabiensis was 6.2 and 1.4 infective bites/person/year, respectively, whereas An. pharoensis had an estimated outdoor EIR of 3.0 infective bites/person/year. In conclusion, An. arabiensis and An. pharoensis showed exophagic and zoophagic behavior. Human exposure to An. arabiensis bites occurred mostly indoors for LLIN non-users, while most of the exposure to both An. arabiensis and An. pharoensis bites occurred outdoors for LLIN users. Malaria transmission by An. arabiensis occurred both indoors and outdoors, whereas An. pharoensis contributed exclusively to outdoor transmission. Additional control tools targeting early-evening and outdoor biting malaria vectors are required to complement the current control interventions to control residual transmission and ultimately achieve malaria elimination.


Asunto(s)
Anopheles , Mordeduras y Picaduras de Insectos , Malaria/transmisión , Mosquitos Vectores , Animales , Bovinos , Femenino , Humanos , Malaria/prevención & control , Control de Mosquitos
10.
Ecology ; 102(3): e03246, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33190245

RESUMEN

Vector-borne diseases threaten human and agricultural health and are a critical component of the ecology of plants and animals. While previous studies have shown that pathogen spread can be affected by vector preferences for host infection status, less attention has been paid to vector preference for host sex, despite abundant evidence of sex-specific variation in disease burden. We investigated vector preference for host infection status and sex in the sterilizing "anther-smut" pathogen (Microbotryum) of the alpine carnation, Dianthus pavonius. The pathogen is transferred among hosts by pollinators that visit infected flowers and become contaminated with spores produced by infected anthers. The host plant has a mixed breeding system with hermaphrodites and females. In experimental floral arrays, pollinators strongly preferred healthy hermaphrodites over both females and diseased plants, consistently across different guilds of pollinators and over multiple years. Using an agent-based model, we showed that pollinator preferences for sex can affect pathogen spread in populations with variable sex ratios, even if there is no preference for infection status. Our results demonstrate that vector preferences for host traits other than infection status can play a critical role in pathogen transmission dynamics when there is heterogeneity for those traits in the host population.


Asunto(s)
Basidiomycota , Dianthus , Animales , Flores , Humanos , Enfermedades de las Plantas , Plantas , Razón de Masculinidad
11.
Insects ; 11(8)2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32784442

RESUMEN

Bacteria belonging to 'Candidatus Liberibacter spp.' are associated with various severe diseases in the five continents. The African citrus psyllid Trioza erytreae (Hemiptera: Triozidae) is an efficient vector of citrus huanglongbing-HLB disease, absent in the Mediterranean basin. This psyllid is currently present in the islands and mainland Portugal and Spain, where the prevalence of 'Ca. Liberibacter solanacearum' (CaLsol) associated to a carrot disease is high. Trioza erytreae normally feeds on citrus plants but has also been observed on other crops. It would be a great concern to the Mediterranean citrus industry if T. erytreae could transmit this bacterium from carrots to citrus and cause disease; therefore, the transmission of CaLsol from carrot plants to citrus plants was experimentally assessed. Although CaLsol was initially detected on receptor citrus plants in transmission assays by dodder and budding, the infection was not established. The feeding behavior by electrical penetration graphs and oviposition of T. erytreae on carrot plants versus citrus plants was evaluated. Trioza erytreae only reached the phloem in citrus plants. However, it was able to acquire CaLsol from infected carrots but unable to transmit it to citrus plants. CaLsol was detected in some carrot plants immediately after 7 and 14 days (inoculation access period), but it was not detected after one month. Trioza erytreae was unable to complete its life cycle on carrot plants. In conclusion, the efficient vector of bacteria associated to huanglongbing was unable to transmit CaLsol from carrot to citrus plants, but it acquired and transmitted the bacterium from carrot to carrot plants with low efficiency.

12.
Viruses ; 12(3)2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32111005

RESUMEN

Plant virus management is mostly achieved through control of insect vectors using insecticides. However, insecticides are only marginally effective for preventing virus transmission. Furthermore, it is well established that symptoms of virus infections often encourage vector visitation to infected hosts, which exacerbates secondary spread. Plant defense elicitors, phytohormone analogs that prime the plant immune system against attack, may be a viable approach for virus control that complements insecticide use by disrupting pathologies that attract vectors. To explore this, we tested the effect of a commercial plant elicitor, acibenzolar-S-methyl (ASM), on infection rates, virus titers, and symptom development in melon plants inoculated with one of two virus species, Cucumber mosaic virus (CMV) and Cucurbit yellow stunting disorder virus (CYSDV). We also conducted behavioral assays to assess the effect of ASM treatment and virus inoculation on vector behavior. For both pathogens, ASM treatment reduced symptom severity and delayed disease progression. For CYSDV, this resulted in the attenuation of symptoms that encourage vector visitation and virion uptake. We did observe slight trade-offs in growth vs. defense following ASM treatment, but these effects did not translate into reduced yields or plant performance in the field. Our results suggest that immunity priming may be a valuable tool for improving management of insect-transmitted plant viruses.


Asunto(s)
Cucurbitaceae/efectos de los fármacos , Cucurbitaceae/virología , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/virología , Virus de Plantas/clasificación , Virus de Plantas/genética , Resistencia a la Enfermedad/inmunología , Susceptibilidad a Enfermedades , Fenotipo , Tiadiazoles/farmacología
13.
Ecology ; 100(7): e02725, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30980528

RESUMEN

Aphids spread the majority of plant viruses through nonpersistent transmission (NPT), whereby virus particles attach transiently to these insects' probing mouthparts. Virus acquisition from infected plants and inoculation to healthy host plants is favored when aphids briefly probe plant epidermal cells. It is well established that NPT virus infection can alter plant-vector interactions, and, moreover, such pathogen modifications are found in a range of plant and animal systems. In particular, viruses can make plants more attractive to aphids but inhibit aphid settling on infected plants. It is hypothesized that this viral "reprogramming" of plants promotes virus acquisition and encourages dispersal of virus-bearing aphids to fresh hosts. In contrast, it is hypothesized that virus-induced biochemical changes encouraging prolonged feeding on infected hosts inhibit NPT. To understand how these virus-induced modifications affect epidemics, we developed a modeling framework accounting for important but often neglected factors, including feeding behaviors (probing or prolonged feeding) and distinct spatial scales of transmission (as conditioned by wingless or winged aphids). Analysis of our models confirmed that when viruses inhibit aphid settling on infected plants this initially promotes virus transmission. However, initially enhanced transmission is self-limiting because it decreases vector density. Another important finding is that virus-induced changes encouraging settling will stimulate birth of winged aphids, which promotes epidemics of NPT viruses over greater distances. Thus our results illustrate how plant virus modifications influence epidemics by altering vector distribution, density, and even vector form. Our insights are important for understanding how pathogens in general propagate through natural plant communities and crops.


Asunto(s)
Áfidos , Virus , Animales , Vectores de Enfermedades , Conducta Alimentaria , Enfermedades de las Plantas
14.
Am Nat ; 192(1): 23-34, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29897804

RESUMEN

The transmission of many animal and plant diseases relies on the behavior of arthropod vectors. In particular, the specific preference for infected or uninfected hosts observed in many vector species is expected to affect the circulation of vector-borne diseases. Here I develop a theoretical framework to study the epidemiology and evolution of the manipulation of host choice behavior of vectors. I show that vector preference strategies have dramatic epidemiological consequences. I also explore the evolution of vector host choice under different scenarios regarding control of the vector behavior by the pathogen. This analysis yields multiple evolutionary outcomes and explains the diversity of host choice behaviors observed in a broad range of vector-borne diseases. In particular, this analysis helps us understand why several pathogens have evolved manipulation strategies that vary with the infectious status of their vector species while other pathogens seem unable to evolve such complex conditional strategies. I argue that contrasting the behavior of infected and uninfected vectors is key to revealing the mechanistic constraints acting on the evolution of the manipulation of vector behavior.


Asunto(s)
Vectores Artrópodos , Evolución Biológica , Conducta de Elección , Transmisión de Enfermedad Infecciosa , Modelos Biológicos , Animales , Factores Epidemiológicos
15.
Adv Virus Res ; 101: 189-250, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29908590

RESUMEN

Plant viruses possess adaptations for facilitating acquisition, retention, and inoculation by vectors. Until recently, it was hypothesized that these adaptations are limited to virus proteins that enable virions to bind to vector mouthparts or invade their internal tissues. However, increasing evidence suggests that viruses can also manipulate host plant phenotypes and vector behaviors in ways that enhance their own transmission. Manipulation of vector-host interactions occurs through virus effects on host cues that mediate vector orientation, feeding, and dispersal behaviors, and thereby, the probability of virus transmission. Effects on host phenotypes vary by pathosystem but show a remarkable degree of convergence among unrelated viruses whose transmission is favored by the same vector behaviors. Convergence based on transmission mechanism, rather than phylogeny, supports the hypothesis that virus effects are adaptive and not just by-products of infection. Based on this, it has been proposed that viruses manipulate hosts through multifunctional proteins that facilitate exploitation of host resources and elicitation of specific changes in host phenotypes. But this proposition is rarely discussed in the context of the numerous constraints on virus evolution imposed by molecular and environmental factors, which figure prominently in research on virus-host interactions not dealing with host manipulation. To explore the implications of this oversight, we synthesized available literature to identify patterns in virus effects among pathogens with shared transmission mechanisms and discussed the results of this synthesis in the context of molecular and environmental constraints on virus evolution, limitations of existing studies, and prospects for future research.


Asunto(s)
Evolución Biológica , Interacciones Huésped-Patógeno , Insectos Vectores/virología , Virus de Plantas/fisiología , Plantas/virología , Adaptación Fisiológica , Animales , Ambiente , Insectos Vectores/fisiología , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Plantas/genética
16.
J Med Entomol ; 54(2): 501-504, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28011725

RESUMEN

The markedly anthropophilic and endophilic behaviors of Aedes aegypti (L.) make it a very efficient vector of dengue, chikungunya, and Zika viruses. Although a large body of research has investigated the immature habitats and conditions for adult emergence, relatively few studies have focused on the indoor resting behavior and distribution of vectors within houses. We investigated the resting behavior of Ae. aegypti indoors in 979 houses of the city of Acapulco, Mexico, by performing exhaustive indoor mosquito collections to describe the rooms and height at which mosquitoes were found resting. In total, 1,403 adult and 747 female Ae. aegypti were collected, primarily indoors (98% adults and 99% females). Primary resting locations included bedrooms (44%), living rooms (25%), and bathrooms (20%), followed by kitchens (9%). Aedes aegypti significantly rested below 1.5 m of height (82% adults, 83% females, and 87% bloodfed females); the odds of finding adult Ae. aegypti mosquitoes below 1.5 m was 17 times higher than above 1.5 m. Our findings provide relevant information for the design of insecticide-based interventions selectively targeting the adult resting population, such as indoor residual spraying.


Asunto(s)
Aedes/fisiología , Animales , Conducta Animal , Femenino , Vivienda , Insectos Vectores/fisiología , Masculino , México
17.
Proc Natl Acad Sci U S A ; 111(30): 11079-84, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-24982164

RESUMEN

Vector-borne pathogens may alter traits of their primary hosts in ways that influence the frequency and nature of interactions between hosts and vectors. Previous work has reported enhanced mosquito attraction to host organisms infected with malaria parasites but did not address the mechanisms underlying such effects. Here we document malaria-induced changes in the odor profiles of infected mice (relative to healthy individuals) over the course of infection, as well as effects on the attractiveness of infected hosts to mosquito vectors. We observed enhanced mosquito attraction to infected mice during a key period after the subsidence of acute malaria symptoms, but during which mice remained highly infectious. This attraction corresponded to an overall elevation in the volatile emissions of infected mice observed during this period. Furthermore, data analyses--using discriminant analysis of principal components and random forest approaches--revealed clear differences in the composition of the volatile blends of infected and healthy individuals. Experimental manipulation of individual compounds that exhibited altered emission levels during the period when differential vector attraction was observed also elicited enhanced mosquito attraction, indicating that compounds being influenced by malaria infection status also mediate vector host-seeking behavior. These findings provide important insights into the cues that mediate vector attraction to hosts infected with transmissible stages of malaria parasites, as well as documenting characteristic changes in the odors of infected individuals that may have potential value as diagnostic biomarkers of infection.


Asunto(s)
Anopheles , Conducta Animal , Insectos Vectores , Malaria , Odorantes , Plasmodium chabaudi , Animales , Femenino , Ratones
18.
Adv Virus Res ; 89: 141-99, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24751196

RESUMEN

Species of plant viruses within the Luteoviridae, Geminiviridae, and Nanoviridae are transmitted by phloem-feeding insects in a circulative, nonpropagative manner. The precise route of virus movement through the vector can differ across and within virus families, but these viruses all share many biological, biochemical, and ecological features. All share temporal and spatial constraints with respect to transmission efficiency. The viruses also induce physiological changes in their plant hosts resulting in behavioral changes in the insects that optimize the transmission of virus to new hosts. Virus proteins interact with insect, endosymbiont, and plant proteins to orchestrate, directly and indirectly, virus movement in insects and plants to facilitate transmission. Knowledge of these complex interactions allows for the development of new tools to reduce or prevent transmission, to quickly identify important vector populations, and to improve the management of these economically important viruses affecting agricultural and natural plant populations.


Asunto(s)
Interacciones Huésped-Parásitos , Insectos Vectores/virología , Enfermedades de las Plantas/virología , Plantas/virología , Animales , Control de Insectos , Enfermedades de las Plantas/prevención & control
19.
Acta Trop ; 130: 35-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24145156

RESUMEN

After several public notifications of domiciliary invasions, palm trees were investigated in downtown Monte Alto City, São Paulo State, Brazil, in proximity to the city hall building, the main church, condominiums and marketing establishments. One hundred seventy four palm trees of 10 species were investigated, in which 72 specimens of Rhodnius neglectus, a potential Chagas disease vector, were captured via manual methods. All insects were collected from dead leaves, organic debris and bird nests in the only three Livistona australis palm trees in the central park square. This was the first record of R. neglectus colonizing this palm species. Although no Trypanosoma cruzi was found by abdominal compression followed by light microscopy, the poor nutritional status of the bugs hampered the examination of gut contents for parasite detection. Furthermore, the central crowns of the trees, which shelter bats (Chiroptera: Mammalia), could not be carefully searched for insects due to difficult access. This new finding highlights the sudden alteration in insect behavior, probably as a result of man's interference. This report aims to warn those involved in the health system about this new threat, justifying detailed research of the area to evaluate the magnitude of this emerging public health issue.


Asunto(s)
Arecaceae/parasitología , Enfermedad de Chagas/transmisión , Insectos Vectores/parasitología , Rhodnius/parasitología , Animales , Brasil , Enfermedad de Chagas/etiología , Humanos , Riesgo , Árboles
20.
Commun Integr Biol ; 3(6): 579-82, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21331245

RESUMEN

Plant chemicals mediating interactions with insect herbivores seem a likely target for manipulation by insectvectored plant pathogens. Yet, little is currently known about the chemical ecology of insect-vectored diseases or their effects on the ecology of vector and nonvector insects. We recently reported that a widespread plant pathogen, Cucumber mosaic virus (CMV), greatly reduces the quality of host-plants (squash) for aphid vectors, but that aphids are nevertheless attracted to the odors of infected plants-which exhibit elevated emissions of a volatile blend otherwise similar to the odor of healthy plants. This finding suggests that exaggerating existing host-location cues can be a viable vector attraction strategy for pathogens that otherwise reduce host quality for vectors. Here we report additional data regarding the effects of CMV infection on plant interactions with a common nonvector herbivore, the squash bug, Anasa tristis, which is a pest in this system. We found that adult A. tristis females preferred to oviposit on healthy plants in the field, and that healthy plants supported higher populations of nymphs. Collectively, our recent findings suggest that CMV-induced changes in host plant chemistry influence the behavior of both vector and non-vector herbivores, with significant implications both for disease spread and for broader community-level interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA