Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Photodiagnosis Photodyn Ther ; 44: 103830, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37852406

RESUMEN

BACKGROUND: Hydroxyapatite (HAp) presents similarities with the human bone structure and presents properties such as biodegradability, biocompatibility, and osteoconductivity, which favors its use in prostheses implants and enables its use as a vehicle for the delivery of photosensitizers (PS) from systems of release (DDS) for photodynamic therapy applications Methods: In this work was to synthesized hydroxyapatite microspheres (meHAp), encapsulated with chloroaluminium phthalocyanine (ClAlPc), for DDS. meHAp was synthesized using vaterite as a template. The drug was encapsulated by mixing meHAp and a 50.0 mg.mL-1 ClAlPc solution. Photochemical, photophysical, and photobiological studies characterized the system. RESULTS: The images from the SEM analysis showed the spherical form of the particles. All spectroscopic results showed excellent photophysical parameters of the drug studied when served in the meHAp system. The incorporation efficiency was 57.8 %. The trypan blue exclusion test results showed a significant reduction (p < 0.05) in cell viability for the groups treated with PDT at all concentrations above 250 µg.mL-1. In 9 L/lacZ gliosarcoma cells, PDT mediated at concentrations from 250 to 62.5 µg.mL-1 reduced cell viability by more than 98 %. In the cell internalization study, it was possible to observe the internalization of phthalocyanines at 37 °C, with the accumulation of PS in the cytoplasm and inside the nucleus in the two tested concentrations. CONCLUSIONS: From all the results presented throughout the article, the meHAp system shows promise for use as a modified release system (DSD) in photodynamic therapy.


Asunto(s)
Gliosarcoma , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes , Fotoquimioterapia/métodos , Durapatita , Operón Lac , Microesferas , Sistemas de Liberación de Medicamentos
2.
Photochem Photobiol Sci ; 22(8): 1977-1989, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37115408

RESUMEN

Calcium carbonate (CaCO3) exhibits a variety of crystalline phases, including the anhydrous crystalline polymorphs calcite, aragonite, and vaterite. Developing porous calcium carbonate microparticles in the vaterite phase for the encapsulation of methylene blue (MB) as a photosensitizer (PS) for use in photodynamic therapy (PDT) was the goal of this investigation. Using an adsorption approach, the PS was integrated into the CaCO3 microparticles. The vaterite microparticles were characterized by scanning electron microscopy (SEM) and steady-state techniques. The trypan blue exclusion method was used to measure the biological activity of macrophages infected with Leishmania braziliensis in vitro. The vaterite microparticles produced are highly porous, non-aggregated, and uniform in size. After encapsulation, the MB-loaded microparticles kept their photophysical characteristics. The carriers that were captured allowed for dye localization inside the cells. The results obtained in this study indicated that the MB-loaded vaterite microparticles show promising photodynamic activity in macrophages infected with Leishmania braziliensis.


Asunto(s)
Leishmania braziliensis , Fotoquimioterapia , Carbonato de Calcio/farmacología , Carbonato de Calcio/química , Azul de Metileno/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Macrófagos
3.
Photodiagnosis Photodyn Ther ; 31: 101913, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32645435

RESUMEN

BACKGROUND: Calcium carbonate (CaCO3) is one of the most abundant materials in the world. It has several different crystalline phases as present in the minerals: calcite, aragonite and vaterite, which are anhydrous crystalline polymorphs. Regarding the preparation of these microparticles, the most important aspect is the control of the polymorphism, particle size and material morphology. This study aimed to develop porous microparticles of calcium carbonate in the vaterite phase for the encapsulation of chloro-aluminum phthalocyanine (ClAlPc) as a photosensitizer (PS) for application in Photodynamic Therapy (TFD). METHODS: In this study, spherical vaterite composed of microparticles are synthesized by precipitation route assisted by polycarboxylate superplasticizer (PSS). The calcium carbonate was prepared by reacting a mixed solution of Na2CO3 with a CaCl2 solution at an ambient temperature, 25 °C, in the presence of polycarboxylate superplasticizer as a stabilizer. The photosensitizer was incorporated by adsorption technique in the CaCO3 microparticles. The CaCO3 microparticles were studied by scanning electron microscopy, steady-state, and their biological activity was evaluated using in vitro cancer cell lines by trypan blue exclusion method. The intracellular localization of ClAlPc was examined by confocal microscopy. RESULTS: The CaCO3 microparticles obtained are uniform and homogeneously sized, non-aggregated, and highly porous microparticles. The calcium carbonate microparticles show an average size of 3 µm average pore size of about 30-40 nm. The phthalocyanine derivative loaded-microparticles maintained their photophysical behavior after encapsulation. The captured carriers have provided dye localization inside cells. The in vitro experiments with ClAlPc-loaded CaCO3 microparticles showed that the system is not cytotoxic in darkness, but exhibits a substantial phototoxicity at 3 µmol.L-1 of photosensitizer concentration and 10 J.cm-2 of light. These conditions are sufficient to kill about 80 % of the cells. CONCLUSIONS: All the performed physical-chemical, photophysical, and photobiological measurements indicated that the phthalocyanine-loaded CaCO3 microparticles are a promising drug delivery system for photodynamic therapy and photoprocesses.


Asunto(s)
Fotoquimioterapia , Adsorción , Carbonato de Calcio , Tamaño de la Partícula , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología
4.
Nanomaterials (Basel) ; 9(8)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31443227

RESUMEN

Multiwalled carbon nanotubes (MWCNTs) are interesting high-tech nanomaterials. MWCNTs oxidized and functionalized with itaconic acid and monomethylitaconate were demonstrated to be efficient additives for controlling nucleation of calcium carbonate (CaCO3) via gas diffusion (GD) in classical as well as nonclassical crystallization, yielding aragonite and truncated calcite. For the first time, all amorphous calcium carbonate (ACC) proto-structures, such as proto calcite-ACC, proto vaterite-ACC and proto aragonite-ACC, were synthesized via prenucleation cluster (PNC) intermediates and stabilized at room temperature. The MWCNTs also showed concentration-dependent nucleation promotion and inhibition similar to biomolecules in nature. Incorporation of fluorescein-5-thiosemicarbazide (5-FTSC) dye-labeled MWCNTs into the CaCO3 lattice resulted in fluorescent hybrid nanosized CaCO3. We demonstrate that functionalized MWCNTs offer a good alternative for controlled selective crystallization and for understanding an inorganic mineralization process.

5.
Rev. colomb. biotecnol ; 19(1): 116-123, ene.-jun. 2017. tab, graf
Artículo en Español | LILACS | ID: biblio-900429

RESUMEN

Resumen Se llevaron a cabo procesos de biosíntesis de carbonato de calcio, empleando una cepa de Bacillus cereus, aislada de los jardines de la Universidad Pontificia Bolivariana (Medellín, Colombia). Se evaluó el efecto disgregante del Tween® 80 a tres concentraciones: 0.00% p/v, 0.25% p/v y 0.50% p/v. Los experimentos se monitorizaron por 6 días con mediciones de pH y análisis mineralógicos a los precipitados finales por microscopía electrónica de barrido, difracción de rayos X y espectroscopia de infrarrojo con transformada de Fourier. El Tween® 80 tuvo un papel importante como desaglomerante de las estructuras de carbonato formadas por los microorganismos. Aunque los ensayos con el surfactante presentaron menor formación de precipitado, las concentraciones evaluadas no inhibieron el crecimiento bacteriano. Adicionalmente, este compuesto favoreció la formación de vaterita incrementando su proporción en comparación con la calcita (alrededor del 98%, utilizando Tween® 80 al 0.50% p/v).


Abstract This research presents the sprinkling effect of Tween® 80 for three concentrations (0.00% w, 0.25% w y 0.50% w) in a processes of calcium carbonate biosynthesis. The assays used a culture of Bacillus cereus, isolated from the gardens of the Universidad Pontificia Bolivariana (Medellin, Colombia). The experiments were monitored for 6 days measuring pH as well as through mineralogical analyses for precipitates using scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. Tween® 80 had an important role as deagglomerate, decreasing the precipitation of biomineralized-carbonate structures (generated by bacteria). It was also found that the evaluated concentrations did not inhibit the bacterial growth. Additionally, Tween® 80 favored the production of vaterite, increasing its ratio in comparison to calcite (around 98% by using 0.50% w of Tween® 80).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA