Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 465
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 332, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251982

RESUMEN

BACKGROUND: In populations with chronic disease, skin autofluorescence (SAF), a measure of long-term fluorescent advanced glycation end-products (AGEs) accumulation in body tissues, has been associated with vascular endothelial function, measured using flow-mediated dilation (FMD). The primary aim of this study was to quantify the relationship between endothelial function and tissue accumulation of AGEs in adults from the general population to determine whether SAF could be used as a marker to predict early impairment of the endothelium. METHODS: A cross-sectional study was conducted with 125 participants (median age: 28.5 y, IQR: 24.4-36.0; 54% women). Endothelial function was measured by fasting FMD. Skin AGEs were measured as SAF using an AGE Reader. Participant anthropometry, blood pressure, and blood biomarkers were also measured. Associations were evaluated using multivariable regression analysis and were adjusted for significant covariates. RESULTS: FMD was inversely correlated with SAF (ρ = -0.50, P < 0.001) and chronological age (ρ = -0.51, P < 0.001). In the multivariable analysis, SAF, chronological age, and male sex were independently associated with reduced FMD (B [95% CI]; -2.60 [-4.40, -0.80]; -0.10 [-0.16, -0.03]; 1.40 [0.14, 2.67], respectively), with the multivariable model adjusted R2 = 0.31, P < 0.001. CONCLUSIONS: Higher skin AGE levels, as measured by SAF, were associated with lower FMD values, in a predominantly young, healthy population. Additionally, older age and male participants exhibited significantly lower FMD values, corresponding with compromised endothelial function. These results suggest that SAF, a simple and inexpensive marker, could be used to predict endothelial impairment before the emergence of any structural artery pathophysiology or classic cardiovascular disease risk markers. TRIAL REGISTRATION: The study was prospectively registered with the Australian New Zealand Clinical Trials Registry (ACTRN12621000821897) and concurrently entered into the WHO International Clinical Trials Registry Platform under the same ID number.


Asunto(s)
Biomarcadores , Endotelio Vascular , Productos Finales de Glicación Avanzada , Piel , Vasodilatación , Humanos , Masculino , Femenino , Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/sangre , Estudios Transversales , Adulto , Piel/irrigación sanguínea , Piel/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Biomarcadores/sangre , Adulto Joven , Factores de Edad , Voluntarios Sanos , Imagen Óptica , Valor Predictivo de las Pruebas , Factores Sexuales
2.
Lipids Health Dis ; 23(1): 279, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227809

RESUMEN

BACKGROUND: NOD-like receptor protein 3 (NLRP3) inflammasome activation is indispensable for atherogenesis. Mitophagy has emerged as a potential strategy to counteract NLRP3 inflammasome activation triggered by impaired mitochondria. Our previous research has indicated that dihydromyricetin, a natural flavonoid, can mitigate NLRP3-mediated endothelial inflammation, suggesting its potential to treat atherosclerosis. However, the precise underlying mechanisms remain elusive. This study sought to investigate whether dihydromyricetin modulates endothelial mitophagy and inhibits NLRP3 inflammasome activation to alleviate atherogenesis, along with the specific mechanisms involved. METHODS: Apolipoprotein E-deficient mice on a high-fat diet were administered daily oral gavages of dihydromyricetin for 14 weeks. Blood samples were procured to determine the serum lipid profiles and quantify proinflammatory cytokine concentrations. Aortas were harvested to evaluate atherosclerotic plaque formation and NLRP3 inflammasome activation. Concurrently, in human umbilical vein endothelial cells, Western blotting, flow cytometry, and quantitative real-time PCR were employed to elucidate the mechanistic role of mitophagy in the modulation of NLRP3 inflammasome activation by dihydromyricetin. RESULTS: Dihydromyricetin administration significantly attenuated NLRP3 inflammasome activation and vascular inflammation in mice on a high-fat diet, thereby exerting a pronounced inhibitory effect on atherogenesis. Both in vivo and in vitro, dihydromyricetin treatment markedly enhanced mitophagy. This enhancement in mitophagy ameliorated the mitochondrial damage instigated by saturated fatty acids, thereby inhibiting the activation and nuclear translocation of NF-κB. Consequently, concomitant reductions in the transcript levels of NLRP3 and interleukin-1ß (IL-1ß), alongside decreased activation of NLRP3 inflammasome and IL-1ß secretion, were discerned. Notably, the inhibitory effects of dihydromyricetin on the activation of NF-κB and subsequently the NLRP3 inflammasome were determined to be, at least in part, contingent upon its capacity to promote mitophagy. CONCLUSION: This study suggested that dihydromyricetin may function as a modulator to promote mitophagy, which in turn mitigates NF-κB activity and subsequent NLRP3 inflammasome activation, thereby conferring protection against atherosclerosis.


Asunto(s)
Aterosclerosis , Dieta Alta en Grasa , Flavonoles , Células Endoteliales de la Vena Umbilical Humana , Inflamasomas , Mitofagia , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Mitofagia/efectos de los fármacos , Animales , Flavonoles/farmacología , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Aterosclerosis/patología , Aterosclerosis/metabolismo , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Ratones , Humanos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones Endogámicos C57BL , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
3.
ARYA Atheroscler ; 20(1): 1-8, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165852

RESUMEN

BACKGROUND: There is a high mortality rate in cyanotic patients with congenital heart disease (CHD) due to cardiovascular complications. The cardiovascular prognosis is negatively affected by endothelium dysfunction, increased arterial stiffness, and impaired vascular system. This study aimed to determine carotid intimal mean thickness (CIMT) and flow-mediated dilatation (FMD) in a group of children with cyanotic CHD (CCHD). METHODS: FMD and CIMT were evaluated for 45 children with CHKD and 38 patients who did not have CHKD over the period 2021 to 2022, as part of this case-control study. In terms of age and gender, the case group has been compared to controls. RESULTS: Men accounted for 61.3% of the participants, with a mean standard deviation age of 7.8 5.39 years. In subjects with CCHD, CIMT increased non-significantly and FMD decreased significantly, but systolic blood pressure was significantly higher in patients than in the healthy group. (P=0.003). CONCLUSION: FMD was reduced in children with CCHD, but in controls, systolic blood pressure and CIMT were lower. The risk of developing atherosclerosis in CCHD patients may be increased by an increase in CIMT and systolic blood pressure.

4.
Front Cell Dev Biol ; 12: 1390794, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114570

RESUMEN

Introduction: Heparan sulfate (HS) in the vascular endothelial glycocalyx (eGC) is a critical regulator of blood vessel homeostasis. Trauma results in HS shedding from the eGC, but the impact of trauma on HS structural modifications that could influence mechanisms of vascular injury and repair has not been evaluated. Moreover, the effect of eGC HS shedding on endothelial cell (EC) homeostasis has not been fully elucidated. The objectives of this work were to characterize the impact of trauma on HS sulfation and determine the effect of eGC HS shedding on the transcriptional landscape of vascular ECs. Methods: Plasma was collected from 25 controls and 49 adults admitted to a level 1 trauma center at arrival and 24 h after hospitalization. Total levels of HS and angiopoietin-2, a marker of pathologic EC activation, were measured at each time point. Enzymatic activity of heparanase, the enzyme responsible for HS shedding, was determined in plasma from hospital arrival. Liquid chromatography-tandem mass spectrometry was used to characterize HS di-/tetrasaccharides in plasma. In vitro work was performed using flow conditioned primary human lung microvascular ECs treated with vehicle or heparinase III to simulate human heparanase activity. Bulk RNA sequencing was performed to determine differentially expressed gene-enriched pathways following heparinase III treatment. Results: We found that heparanase activity was increased in trauma plasma relative to controls, and HS levels at arrival were elevated in a manner proportional to injury severity. Di-/tetrasaccharide analysis revealed lower levels of 3-O-sulfated tetramers with a concomitant increase in ΔIIIS and ΔIIS disaccharides following trauma. Admission levels of total HS and specific HS sulfation motifs correlated with 24-h angiopoietin-2 levels, suggesting an association between HS shedding and persistent, pathological EC activation. In vitro pathway analysis demonstrated downregulation of genes that support cell junction integrity, EC polarity, and EC senescence while upregulating genes that promote cell differentiation and proliferation following HS shedding. Discussion: Taken together, our findings suggest that HS cleavage associated with eGC injury may disrupt homeostatic EC signaling and influence biosynthetic mechanisms governing eGC repair. These results require validation in larger, multicenter trauma populations coupled with in vivo EC-targeted transcriptomic and proteomic analyses.

5.
Nutrients ; 16(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125360

RESUMEN

Withania somnifera, commonly known as Ashwagandha, has been popular for many years. Numerous studies have shown that the extract of this plant, due to its wealth of active substances, can induce anti-inflammatory, neuroprotective, immunomodulatory, hepatoprotective, cardioprotective, anti-diabetic, adaptogenic, anti-arthritic, anti-stress, and antimicrobial effects. This review examines the impact of Ashwagandha extract on the vascular endothelium, inflammation, lipid metabolism, and cardiovascular outcomes. Studies have shown that Ashwagandha extracts exhibit an anti-angiogenic effect by inhibiting vascular endothelial growth factor (VEGF)-induced capillary sprouting and formation by lowering the mean density of microvessels. Furthermore, the results of numerous studies highlight the anti-inflammatory role of Ashwagandha extract, as the action of this plant causes a decrease in the expression of pro-inflammatory cytokines. Interestingly, withanolides, present in Ashwagandha root, have shown the ability to inhibit the differentiation of preadipocytes into adipocytes. Research results have also proved that W. somnifera demonstrates cardioprotective effects due to its antioxidant properties and reduces ischemia/reperfusion-induced apoptosis. It seems that this plant can be successfully used as a potential treatment for several conditions, mainly those with increased inflammation. More research is needed to elucidate the exact mechanisms by which the substances contained in W. somnifera extracts can act in the human body.


Asunto(s)
Antiinflamatorios , Enfermedades Cardiovasculares , Endotelio Vascular , Inflamación , Metabolismo de los Lípidos , Extractos Vegetales , Withania , Humanos , Extractos Vegetales/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Antiinflamatorios/farmacología , Withania/química , Enfermedades Cardiovasculares/tratamiento farmacológico , Animales , Antioxidantes/farmacología
6.
Geroscience ; 46(5): 5191-5202, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38980632

RESUMEN

As individuals age, there is a gradual decline in cardiopulmonary function, often accompanied by cardiac pump dysfunction leading to increased pulmonary vascular resistance (PVR). Our study aims to investigate the changes in cardiac and pulmonary vascular function associated with aging. Additionally, we aim to explore the impact of phosphodiesterase 9A (PDE9A) inhibition, which has shown promise in treating cardiometabolic diseases, on addressing left ventricle (LV) dysfunction and elevated PVR in aging individuals. Young (3 months old) and aged (32 months old) male C57BL/6 mice were used. Aged mice were treated with the selective PDE9A inhibitor PF04447943 (1 mg/kg/day) through intraperitoneal injections for 10 days. LV function was evaluated using cardiac ultrasound, and PVR was assessed in isolated, ventilated lungs perfused under a constant flow condition. Additionally, changes in PVR were measured in response to perfusion of the endothelium-dependent agonist bradykinin or to nitric oxide (NO) donor sodium nitroprusside (SNP). PDE9A protein expression was measured by Western blots. Our results demonstrate the development of LV diastolic dysfunction and increased PVR in aged mice. The aged mice exhibited diminished decreases in PVR in response to both bradykinin and SNP compared to the young mice. Moreover, the lungs of aged mice showed an increase in PDE9A protein expression. Treatment of aged mice with PF04447943 had no significant effect on LV systolic or diastolic function. However, PF04447943 treatment normalized PVR and SNP-induced responses, though it did not affect the bradykinin response. These data demonstrate a development of LV diastolic dysfunction and increase in PVR in aged mice. We propose that inhibitors of PDE9A could represent a novel therapeutic approach to specifically prevent aging-related pulmonary dysfunction.


Asunto(s)
Envejecimiento , Ratones Endogámicos C57BL , Resistencia Vascular , Animales , Masculino , Envejecimiento/fisiología , Resistencia Vascular/efectos de los fármacos , Ratones , 3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Disfunción Ventricular Izquierda/tratamiento farmacológico , Inhibidores de Fosfodiesterasa/farmacología , Western Blotting
7.
Sci Rep ; 14(1): 14120, 2024 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898068

RESUMEN

Diabetic foot ulcer (DFU) is a leading cause of high-level amputation in DM patients, with a low wound healing rate and a high incidence of infection. Vascular endothelial growth factor (VEGF) plays an important role in diabetes mellitus (DM) related complications. This study aims to explore the VEGF expression and its predictive value for prognosis in DFU, in order to provide basis for the prevention of DFU related adverse events. We analyzed 502 patients, with 328 in healing group and 174 in non-healing/recurrent group. The general clinical data and laboratory indicators of patients were compared through Spearman correlation analysis, ROC analysis and logistic regression analysis. Finally, the independent risk factors for adverse prognosis in DFU patients were confirmed. Spearman analysis reveals a positive correlation between the DFU healing rate and ABI, VEGF in wound tissue, and positive rate of VEGF expression, and a negative correlation with DM duration, FPG, HbA1c, TC, Scr, BUN, and serum VEGF. Further logistic regression analysis finds that the DM duration, FPG, HbA1c, ABI, serum VEGF, VEGF in wound tissue, and positive rate of VEGF expression are the independent risk factors for adverse prognosis in DFU (p < 0.05). DM duration, FPG, HbA1c, ABI, serum VEGF, VEGF in wound tissue, and positive rate of VEGF expression are the independent risk factors for prognosis in DFU patients. Patients with these risk factors should be screened in time, which is of great significance to prevent DFU related adverse events and improve outcomes.


Asunto(s)
Pie Diabético , Factor A de Crecimiento Endotelial Vascular , Cicatrización de Heridas , Humanos , Pie Diabético/metabolismo , Masculino , Femenino , Factores de Riesgo , Pronóstico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/sangre , Persona de Mediana Edad , Anciano
8.
Cureus ; 16(5): e60703, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38899253

RESUMEN

Sickle cell disease (SCD) is marked by episodic vaso-occlusive crisis (VOC). Recurrent VOC creates a pro-inflammatory state that induces phenotypic alterations in innate immune cells. Monocytes are of particular interest to VOC pathophysiology because they are especially malleable to inflammatory signaling. Indeed, inflammatory disease states such as chronic obstructive pulmonary disease (COPD), obesity and atherosclerosis are known to influence monocyte development and alter monocyte subpopulations. In this study, we describe SCD monocyte subsets by performing immunophenotypic flow cytometric, enzymatic, and morphologic analysis on peripheral blood. Herein, we add to the growing body of evidence suggesting aberrant monocyte populations underpin VOC pathophysiology. We found that SCD monocytes possess an immature phenotype as demonstrated by 1) decreased CD4 positivity (p < .01), 2) low α-naphthyl butyrate esterase (ANBE) expression, and 3) naïve morphologic features. We additionally found an increase in CD14+CD16-CD4- monocytes (p < .01), a subset associated with the impaired immune response of post-trauma patients. Interestingly, we also found a large proportion of CD14+CD4-HLA-DR- monocytes which, under normal circumstances, are exclusively found in neonates (p < .01). Finally, we report an increase in nonclassical monocytes (CD14dimCD16+), a subset recently shown to have a critical role in prevention and recovery from VOC.

9.
J Am Heart Assoc ; 13(10): e033998, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38726925

RESUMEN

BACKGROUND: The vasoconstrictor effects of angiotensin II via type 1 angiotensin II receptors in vascular smooth muscle cells are well established, but the direct effects of angiotensin II on vascular endothelial cells (VECs) in vivo and the mechanisms how VECs may mitigate angiotensin II-mediated vasoconstriction are not fully understood. The present study aimed to explore the molecular mechanisms and pathophysiological relevance of the direct actions of angiotensin II on VECs in kidney and brain microvessels in vivo. METHODS AND RESULTS: Changes in VEC intracellular calcium ([Ca2+]i) and nitric oxide (NO) production were visualized by intravital multiphoton microscopy of cadherin 5-Salsa6f mice or the endothelial uptake of NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, respectively. Kidney fibrosis by unilateral ureteral obstruction and Ready-to-use adeno-associated virus expressing Mouse Renin 1 gene (Ren1-AAV) hypertension were used as disease models. Acute systemic angiotensin II injections triggered >4-fold increases in VEC [Ca2+]i in brain and kidney resistance arterioles and capillaries that were blocked by pretreatment with the type 1 angiotensin II receptor inhibitor losartan, but not by the type 2 angiotensin II receptor inhibitor PD123319. VEC responded to acute angiotensin II by increased NO production as indicated by >1.5-fold increase in 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence intensity. In mice with kidney fibrosis or hypertension, the angiotensin II-induced VEC [Ca2+]i and NO responses were significantly reduced, which was associated with more robust vasoconstrictions, VEC shedding, and microthrombi formation. CONCLUSIONS: The present study directly visualized angiotensin II-induced increases in VEC [Ca2+]i and NO production that serve to counterbalance agonist-induced vasoconstriction and maintain residual organ blood flow. These direct and endothelium-specific angiotensin II effects were blunted in disease conditions and linked to endothelial dysfunction and the development of vascular pathologies.


Asunto(s)
Angiotensina II , Encéfalo , Calcio , Hipertensión , Riñón , Microvasos , Óxido Nítrico , Vasoconstricción , Animales , Ratones , Angiotensina II/farmacología , Encéfalo/metabolismo , Encéfalo/irrigación sanguínea , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Hipertensión/tratamiento farmacológico , Riñón/irrigación sanguínea , Riñón/metabolismo , Ratones Endogámicos C57BL , Microvasos/metabolismo , Microvasos/efectos de los fármacos , Microvasos/patología , Óxido Nítrico/metabolismo , Vasoconstricción/efectos de los fármacos
10.
J Allergy Clin Immunol ; 154(3): 719-734, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38777155

RESUMEN

BACKGROUND: Mast cell-derived mediators induce vasodilatation and fluid extravasation, leading to cardiovascular failure in severe anaphylaxis. We previously revealed a synergistic interaction between the cytokine IL-4 and the mast cell-derived mediator histamine in modulating vascular endothelial (VE) dysfunction and severe anaphylaxis. The mechanism by which IL-4 exacerbates histamine-induced VE dysfunction and severe anaphylaxis is unknown. OBJECTIVE: We sought to identify the IL-4-induced molecular processes regulating the amplification of histamine-induced VE barrier dysfunction and the severity of IgE-mediated anaphylactic reactions. METHODS: RNA sequencing, Western blot, Ca2+ imaging, and barrier functional analyses were performed on the VE cell line (EA.hy926). Pharmacologic degraders (selective proteolysis-targeting chimera) and genetic (lentiviral short hairpin RNA) inhibitors were used to determine the roles of signal transducer and activator of transcription 3 (STAT3) and STAT6 in conjunction with in vivo model systems of histamine-induced hypovolemic shock. RESULTS: IL-4 enhancement of histamine-induced VE barrier dysfunction was associated with increased VE-cadherin degradation, intracellular calcium flux, and phosphorylated Src levels and required transcription and de novo protein synthesis. RNA sequencing analyses of IL-4-stimulated VE cells identified dysregulation of genes involved in cell proliferation, cell development, and cell growth, and transcription factor motif analyses revealed a significant enrichment of differential expressed genes with putative STAT3 and STAT6 motif. IL-4 stimulation in EA.hy926 cells induced both serine residue 727 and tyrosine residue 705 phosphorylation of STAT3. Genetic and pharmacologic ablation of VE STAT3 activity revealed a role for STAT3 in basal VE barrier function; however, IL-4 enhancement and histamine-induced VE barrier dysfunction was predominantly STAT3 independent. In contrast, IL-4 enhancement and histamine-induced VE barrier dysfunction was STAT6 dependent. Consistent with this finding, pharmacologic knockdown of STAT6 abrogated IL-4-mediated amplification of histamine-induced hypovolemia. CONCLUSIONS: These studies unveil a novel role of the IL-4/STAT6 signaling axis in the priming of VE cells predisposing to exacerbation of histamine-induced anaphylaxis.


Asunto(s)
Anafilaxia , Histamina , Interleucina-4 , Factor de Transcripción STAT6 , Choque , Factor de Transcripción STAT6/metabolismo , Histamina/metabolismo , Humanos , Choque/inducido químicamente , Animales , Anafilaxia/inmunología , Anafilaxia/metabolismo , Ratones , Transducción de Señal , Endotelio Vascular/metabolismo , Línea Celular , Factor de Transcripción STAT3/metabolismo , Masculino , Células Endoteliales/metabolismo , Cadherinas/metabolismo , Cadherinas/genética
11.
Curr Issues Mol Biol ; 46(5): 3794-3809, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38785504

RESUMEN

The endothelial glycocalyx (EGC) is a layer of proteoglycans (associated with glycosaminoglycans) and glycoproteins, which adsorbs plasma proteins on the luminal surface of endothelial cells. Its main function is to participate in separating the circulating blood from the inner layers of the vessels and the surrounding tissues. Physiologically, the EGC stimulates mechanotransduction, the endothelial charge, thrombocyte adhesion, leukocyte tissue recruitment, and molecule extravasation. Hence, severe impairment of the EGC has been implicated in various pathological conditions, including sepsis, diabetes, chronic kidney disease, inflammatory disorders, hypernatremia, hypervolemia, atherosclerosis, and ischemia/reperfusion injury. Moreover, alterations in EGC have been associated with altered responses to therapeutic interventions in conditions such as cardiovascular diseases. Investigation into the function of the glycocalyx has expanded knowledge about vascular disorders and indicated the need to consider new approaches in the treatment of severe endothelial dysfunction. This review aims to present the current understanding of the molecular mechanisms underlying cardiovascular diseases and to elucidate the impact of heart surgery on EGC dysfunction.

12.
Gac Med Mex ; 160(1): 23-31, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753572

RESUMEN

BACKGROUND: Endothelial dysfunction (ED) suspicion will allow to prevent accelerated atherosclerosis and premature death. OBJECTIVE: To establish the usefulness of thermography for endothelial function screening in adults with cardiovascular risk factors. MATERIAL AND METHODS: Cross-sectional, analytical diagnostic test. A brachial arterial diameter (BAD) increase < 11% at one-minute post-ischemia meant probable ED and was confirmed if BAD was ≥ 11% post-sublingual nitroglycerin. Thermographic photographs of the palmar region were obtained at one minute. Descriptive statistics, ROC curve, Mann-Whitney's U-test, chi-square test, or Fisher's exact test were used. RESULTS: Thirty-eight subjects with a median age of 50 years, and with 624 thermographic measurements were included. Nine had ED (flow-mediated vasodilation [FMV]: 2.5%). The best cutoff point for normal endothelial function in subjects with cardiovascular risk factors was ≥ 36 °C at one minute of ischemia, with 85% sensitivity, 70% specificity, positive and negative predictive values of 78 and 77%, area under the curve of 0.796, LR+ 2.82, LR- 0.22. CONCLUSION: An infrared thermography-measured temperature in the palmar region greater than or equal to 36 °C after one minute of ischemia is practical, non-invasive, and inexpensive for normal endothelial function screening in adults with cardiovascular risk factors.


ANTECEDENTES: La sospecha de disfunción endotelial (DE) permitirá prevenir la aterosclerosis acelerada y la muerte prematura. OBJETIVO: Establecer la utilidad de la termografía en el cribado de la función endotelial en adultos con factores de riesgo cardiovascular. MATERIAL Y MÉTODOS: Estudio transversal analítico de prueba diagnóstica. El incremento del diámetro de la arteria braquial < 11 % a un minuto posisquemia significó probable DE, confirmada si el diámetro fue ≥ 11 % posnitroglicerina sublingual. Se obtuvieron fotografías termográficas al minuto de la región palmar. Se aplicó estadística descriptiva, curva ROC, pruebas U de Mann-Whitney, chi cuadrada o exacta de Fisher. RESULTADOS: Se incluyeron 38 sujetos, mediana de edad de 50 años, con 624 mediciones termográficas; nueve presentaron DE (vasodilatación mediada por flujo de 2.5 %). El mejor punto de corte para la función endotelial normal en sujetos con factores de riesgo cardiovascular fue ≥ 36 °C al minuto de isquemia, con sensibilidad de 85%, especificidad de 70%, valores predictivos positivo y negativo de 78 y 77%, área bajo la curva de 0.796, razón de verisimilitud positiva de 2.82 y razón de verisimilitud negativa de 0.22. CONCLUSIÓN: La medición de la temperatura en la región palmar mediante termografía infrarroja ≥ 36 °C tras un minuto de isquemia es práctica, no invasiva y económica para el cribado de la función endotelial normal en adultos con factores de riesgo cardiovascular.


Asunto(s)
Endotelio Vascular , Termografía , Humanos , Termografía/métodos , Persona de Mediana Edad , Masculino , Femenino , Estudios Transversales , Endotelio Vascular/fisiopatología , Adulto , Anciano , Factores de Riesgo de Enfermedad Cardiaca , Sensibilidad y Especificidad , Rayos Infrarrojos , Arteria Braquial/fisiología , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/fisiopatología , Vasodilatación/fisiología , Valor Predictivo de las Pruebas
13.
Cancer Sci ; 115(6): 1936-1947, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38590281

RESUMEN

The immunoglobulin superfamily (IgSF) is one of the largest families of cell-surface molecules involved in various cell-cell interactions, including cancer-stromal interactions. In this study, we undertook a comprehensive RT-PCR-based screening for IgSF molecules that promote experimental lung metastasis in mice. By comparing the expression of 325 genes encoding cell-surface IgSF molecules between mouse melanoma B16 cells and its highly metastatic subline, B16F10 cells, we found that expression of the immunoglobulin superfamily member 3 gene (Igsf3) was significantly enhanced in B16F10 cells than in B16 cells. Knockdown of Igsf3 in B16F10 cells significantly reduced lung metastasis following intravenous injection into C57BL/6 mice. IGSF3 promoted adhesion of B16F10 cells to vascular endothelial cells and functioned as a homophilic cell adhesion molecule between B16F10 cells and vascular endothelial cells. Notably, the knockdown of IGSF3 in either B16F10 cells or vascular endothelial cells suppressed the transendothelial migration of B16F10 cells. Moreover, IGSF3 knockdown suppressed the extravasation of B16F10 cells into the lungs after intravenous injection. These results suggest that IGSF3 promotes the metastatic potential of B16F10 cells in the lungs by facilitating their adhesion to vascular endothelial cells.


Asunto(s)
Endotelio Vascular , Neoplasias Pulmonares , Melanoma Experimental , Animales , Humanos , Ratones , Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Línea Celular Tumoral , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Técnicas de Silenciamiento del Gen , Inmunoglobulinas/metabolismo , Inmunoglobulinas/genética , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Melanoma Experimental/patología , Melanoma Experimental/metabolismo , Melanoma Experimental/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL
14.
Dent Med Probl ; 61(4): 475-477, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38517218

RESUMEN

In this comment, we explored the link between sleep fragmentation and the cardiovascular risk, considering various sleep disorders and methodologies for assessing sleep fragmentation.


Asunto(s)
Enfermedades Cardiovasculares , Factores de Riesgo de Enfermedad Cardiaca , Privación de Sueño , Trastornos del Sueño-Vigilia , Humanos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Privación de Sueño/complicaciones , Trastornos del Sueño-Vigilia/epidemiología , Factores de Riesgo
15.
Atherosclerosis ; 392: 117506, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518516

RESUMEN

BACKGROUND AND AIMS: Long noncoding RNAs are involved in the pathogenesis of atherosclerosis. As long noncoding RNAs maternally expressed gene 3 (Meg3) prevents cellular senescence of hepatic vascular endothelium and obesity-induced insulin resistance, we decided to examine its role in cellular senescence and atherosclerosis. METHODS AND RESULTS: By analyzing our data and human and mouse data from the Gene Expression Omnibus database, we found that Meg3 expression was reduced in humans and mice with cardiovascular disease, indicating its potential role in atherosclerosis. In Ldlr-/- mice fed a Western diet for 12 weeks, Meg3 silencing by chemically modified antisense oligonucleotides attenuated the formation of atherosclerotic lesions by 34.9% and 20.1% in male and female mice, respectively, revealed by en-face Oil Red O staining, which did not correlate with changes in plasma lipid profiles. Real-time quantitative PCR analysis of cellular senescence markers p21 and p16 revealed that Meg3 deficiency aggravates hepatic cellular senescence but not cellular senescence at aortic roots. Human Meg3 transgenic mice were generated to examine the role of Meg3 gain-of-function in the development of atherosclerosis induced by PCSK9 overexpression. Meg3 overexpression promotes atherosclerotic lesion formation by 29.2% in Meg3 knock-in mice independent of its effects on lipid profiles. Meg3 overexpression inhibits hepatic cellular senescence, while it promotes aortic cellular senescence likely by impairing mitochondrial function and delaying cell cycle progression. CONCLUSIONS: Our data demonstrate that Meg3 promotes the formation of atherosclerotic lesions independent of its effects on plasma lipid profiles. In addition, Meg3 regulates cellular senescence in a tissue-specific manner during atherosclerosis. Thus, we demonstrated that Meg3 has multifaceted roles in cellular senescence and atherosclerosis.


Asunto(s)
Aterosclerosis , Senescencia Celular , ARN Largo no Codificante , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Modelos Animales de Enfermedad , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Placa Aterosclerótica , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Transducción de Señal
16.
Sci Rep ; 14(1): 5836, 2024 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462667

RESUMEN

Vascular injury such as central venous stenosis (CVS) is a common complication in hemodialysis patients with central venous catheters (CVCs), yet the impact of the microstructure and partial physic characteristics of catheter surface on the chronic injury of central vein has not been elucidated. In this study, the microscopic morphology of tips and bodies of six different brands of polyurethane CVCs was observed and their roughness was assessed. Subsequently, an in vitro model was established to measure the coefficients of friction (COF) between CVCs (tips and bodies) and the vena cava intima of Japanese rabbits under the same condition in a linear reciprocating mode, and changes in the intima of vessels after friction were observed. The study found that there was a significant variation in surface roughness among different brands of CVCs (tips P < 0.001, bodies P = 0.02), and the COF was positively correlated with the catheter surface roughness (tips P = 0.005, R = 0.945, bodies P = 0.01, R = 0.909). Besides, the endovascular roughness increased after friction. These findings suggest that the high roughness surface of CVCs may cause chronic mechanical friction injury to the central venous intima, which is one of the potential factors leading to CVS or occlusion. This provides a breakthrough for reducing complications, improving patient prognosis, and advancing catheter surface lubrication technology.


Asunto(s)
Cateterismo Venoso Central , Catéteres Venosos Centrales , Enfermedades Vasculares , Humanos , Conejos , Animales , Cateterismo Venoso Central/efectos adversos , Fricción , Catéteres Venosos Centrales/efectos adversos , Diálisis Renal/efectos adversos , Venas , Enfermedades Vasculares/etiología
17.
Indian Heart J ; 76(1): 1-5, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38387552

RESUMEN

Cardiovascular diseases (CVD) remain a major global health challenge, with an escalating impact on mortality despite advancements in managing conventional risk factors. This review investigates the intricate relationship between human papillomavirus (HPV) and CVD, shedding light on a novel aspect of cardiovascular health. Despite significant progress in understanding and managing traditional CVD risk factors, a substantial proportion of CVD cases lack these conventional markers. Recent research has unveiled HPV, a prevalent sexually transmitted infection, as a potential unconventional risk factor for CVD. This review delves into the underlying mechanisms linking HPV to CVD pathogenesis. HPV's influence on vascular endothelium and induction of systemic inflammation are key contributors. Additionally, HPV disrupts host lipid metabolism, further exacerbating the development of atherosclerosis. The link between HPV and CAD is not merely correlative; it encompasses a complex interplay of virological, immunological, and metabolic factors. Understanding the connection between HPV and CVD holds transformative potential. Insights from this review not only underscore the significance of considering HPV as a crucial risk factor but also advocate for targeted HPV screening and vaccination strategies to mitigate CVD risks. This multidisciplinary exploration bridges the gap between infectious diseases and cardiovascular health, emphasizing the need for a comprehensive approach to combating the global burden of cardiovascular disease. Further research and clinical guidelines in this realm are essential to harness the full scope of preventive and therapeutic interventions, ultimately shaping a healthier cardiovascular landscape.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Infecciones por Papillomavirus , Humanos , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/epidemiología , Infecciones por Papillomavirus/prevención & control , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Virus del Papiloma Humano , Factores de Riesgo
18.
Braz. j. med. biol. res ; 57: e13304, fev.2024. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1557318

RESUMEN

Arthritis has important cardiovascular repercussions. Phenylephrine-induced vasoconstriction is impaired in rat aortas in the early phase of the adjuvant-induced arthritis (AIA), around the 15th day post-induction. Therefore, the present study aimed to verify the effects of AIA on hyporesponsiveness to phenylephrine in rat aortas. AIA was induced by intradermal injection of Mycobacterium tuberculosis (3.8 mg/dL) in the right hind paw of male Wistar rats (n=27). Functional experiments in isolated aortas were carried out 15 days after AIA induction. Morphometric and stereological analyses of the aortas were also performed 36 days after the induction of AIA. AIA did not promote structural modifications in the aortas at any of the time points studied. AIA reduced phenylephrine-induced contraction in endothelium-intact aortas, but not in endothelium-denuded aortas. However, AIA did not change KCl-induced contraction in either endothelium-intact or denuded aortas. L-NAME (non-selective NOS inhibitor), 1400W (selective iNOS inhibitor), and ODQ (guanylyl cyclase inhibitor) reversed AIA-induced hyporesponsiveness to phenylephrine in intact aortas. 7-NI (selective nNOS inhibitor) increased the contraction induced by phenylephrine in aortas from AIA rats. In summary, the hyporesponsiveness to phenylephrine induced by AIA was endothelium-dependent and mediated by iNOS-derived NO through activation of the NO-guanylyl cyclase pathway.

19.
Gac. méd. Méx ; 160(1): 26-35, ene.-feb. 2024. tab, graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1557800

RESUMEN

Resumen Antecedentes: La sospecha de disfunción endotelial (DE) permitirá prevenir la aterosclerosis acelerada y la muerte prematura. Objetivo: Establecer la utilidad de la termografía en el cribado de la función endotelial en adultos con factores de riesgo cardiovascular. Material y métodos: Estudio transversal analítico de prueba diagnóstica. El incremento del diámetro de la arteria braquial < 11 % a un minuto posisquemia significó probable DE, confirmada si el diámetro fue ≥ 11 % posnitroglicerina sublingual. Se obtuvieron fotografías termográficas al minuto de la región palmar. Se aplicó estadística descriptiva, curva ROC, pruebas U de Mann-Whitney, chi cuadrada o exacta de Fisher. Resultados: Se incluyeron 38 sujetos, mediana de edad de 50 años, con 624 mediciones termográficas; nueve presentaron DE (vasodilatación mediada por flujo de 2.5 %). El mejor punto de corte para la función endotelial normal en sujetos con factores de riesgo cardiovascular fue ≥ 36 °C al minuto de isquemia, con sensibilidad de 85%, especificidad de 70%, valores predictivos positivo y negativo de 78 y 77%, área bajo la curva de 0.796, razón de verisimilitud positiva de 2.82 y razón de verisimilitud negativa de 0.22. Conclusión: La medición de la temperatura en la región palmar mediante termografía infrarroja ≥ 36 °C tras un minuto de isquemia es práctica, no invasiva y económica para el cribado de la función endotelial normal en adultos con factores de riesgo cardiovascular.


Abstract Background: Endothelial dysfunction (ED) suspicion will allow to prevent accelerated atherosclerosis and premature death. Objective: To establish the usefulness of thermography for endothelial function screening in adults with cardiovascular risk factors. Material and methods: Cross-sectional, analytical diagnostic test. A brachial arterial diameter (BAD) increase <11 % at one-minute post-ischemia meant probable ED and was confirmed if BAD was ≥ 11 % post-sublingual nitroglycerin. Thermographic photographs of the palmar region were obtained at one minute. Descriptive statistics, ROC curve, Mann-Whitney’s U-test, chi-square test, or Fisher’s exact test were used. Results: Thirty-eight subjects with a median age of 50 years, and with 624 thermographic measurements were included. Nine had ED (flow-mediated vasodilation (FMV): 2.5 %. The best cutoff point for normal endothelial function in subjects with cardiovascular risk factors was ≥ 36 °C at one minute of ischemia, with 85 % sensitivity, 70 % specificity, positive and negative predictive values of 78 and 77 %, area under the curve of 0.796, LR+ 2.82, LR- 0.22. Conclusions: An infrared thermography-measured temperature in the palmar region greater than or equal to 36 °C after one minute of ischemia is practical, non-invasive, and inexpensive for normal endothelial function screening in adults with cardiovascular risk factors.

20.
Biomolecules ; 14(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38397377

RESUMEN

A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and, as such, provides a semi-selective barrier between the blood and the interstitial space. Compromise of the lung EC barrier due to inflammatory or toxic events may result in pulmonary edema, which is a cardinal feature of acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). The EC functions are controlled, at least in part, via epigenetic mechanisms mediated by histone deacetylases (HDACs). Zinc-dependent HDACs represent the largest group of HDACs and are activated by Zn2+. Members of this HDAC group are involved in epigenetic regulation primarily by modifying the structure of chromatin upon removal of acetyl groups from histones. In addition, they can deacetylate many non-histone histone proteins, including those located in extranuclear compartments. Recently, the therapeutic potential of inhibiting zinc-dependent HDACs for EC barrier preservation has gained momentum. However, the role of specific HDAC subtypes in EC barrier regulation remains largely unknown. This review aims to provide an update on the role of zinc-dependent HDACs in endothelial dysfunction and its related diseases. We will broadly focus on biological contributions, signaling pathways and transcriptional roles of HDACs in endothelial pathobiology associated mainly with lung diseases, and we will discuss the potential of their inhibitors for lung injury prevention.


Asunto(s)
Células Endoteliales , Histona Desacetilasas , Histona Desacetilasas/metabolismo , Células Endoteliales/metabolismo , Epigénesis Genética , Zinc/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Pulmón/metabolismo , Histonas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA