Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 699
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124958, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39146627

RESUMEN

Vanillin is a commonly used synthetic flavoring agent in daily life. However, excessive intake of vanillin may pose risks to human health. Therefore, there is an urgent need for rapid and sensitive detection methods for vanillin. In this study, we developed a fluorescent sensor based on Cd-MOF for the sensitive and selective recognition of vanillin. The presence of vanillin leads to significant fluorescence quenching of Cd-MOF due to competitive absorption and photoinduced electron transfer (PET). The limit of detection was determined to be 39.6 nM, which is the lowest-among the reported fluorescent probes. The sensor was successfully applied for the detection of vanillin in real samples such as powdered milk and milk, with a recovery rate ranging from 96.88 % to 104.83 %. Furthermore, by immobilizing the Cd-MOF probe into a polyvinyl alcohol (PVA) film, we achieved a portable and visual detection composite materials for vanillin.


Asunto(s)
Benzaldehídos , Estructuras Metalorgánicas , Leche , Espectrometría de Fluorescencia , Benzaldehídos/análisis , Benzaldehídos/química , Leche/química , Animales , Espectrometría de Fluorescencia/métodos , Estructuras Metalorgánicas/química , Polvos , Colorantes Fluorescentes/química , Límite de Detección , Cadmio/análisis
2.
ChemSusChem ; : e202400638, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248204

RESUMEN

The transformation from fossil resources, crude oil and natural gas to biomass-derived feedstocks is an urgent and major challenge for the chemical industry. The valorization of lignocellulose as renewable resource is a promising pathway offering access to a wide range of platform chemicals, such as vanillin, furfural and 5-HMF. The subsequent conversion of such platform chemicals is one crucial step in the value-added chain. The electrochemical hydrodimerization (EHD) is a sustainable tool for C-C coupling of these chemicals to their corresponding hydrodimers hydrovanilloin, hydrofuroin and 5,5´-bis(hydroxymethyl)hydrofuroin (BHH). This review covers the current state of art concerning the mechanism of the electrochemical reduction of biobased aldehydes and studies targeting the electrochemical production of these hydrodimers in aqueous media. Moreover, the subsequent conversion of these hydrodimers to valuable additives, polymers and long carbon chain synfuels will be summarized offering a broad scope for their application in the chemical industry.

3.
Food Chem ; 463(Pt 2): 141215, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39278078

RESUMEN

Endogenous enzymes play a crucial role in determining fish product aroma. However, the attached microorganisms can promote enzyme production, making it challenging to identify specific aromatic compounds resulting from endogenous enzymes. Thus, we investigated the aroma transformation of Japanese sea bass through enzymatic incubation by controlling attached microorganisms during the lag phase. Our results demonstrate that enzymatic incubation significantly enhances grassy and sweet notes while reducing fishy odors. These changes in aroma are associated with increased levels of 10 volatile compounds and decreased levels of 3 volatile compounds. Among them, previous studies have reported enzyme reaction pathways for octanal, 1-nonanal, vanillin, indole, linalool, geraniol, citral, and 6-methyl-5-hepten-2-one; however, the enzymatic reaction pathways for germacrene D, beta-caryophyllene, pristane, 1-tetradecene and trans-beta-ocimene remain unclear. These findings provide novel insights for further study to elucidate the impact of endogenous enzymes on fish product aromas.

4.
Foods ; 13(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39272542

RESUMEN

Vanilla planifolia is grown as a high-value orchid spice for its odor and savor attributes that increase due to the curing process associated with microbial colonization. This tends to influence the aromatic properties of vanilla. Hence, 11 Bacillus sp. strains were isolated from V. planifolia and identified with 16S rRNA gene sequencing. The liquid culture (1 mL of 107 CFU mL-1) of selected Bacillus vallismortis NR_104873.1:11-1518, Bacillus velezensis ZN-S10, and Bacillus tropicus KhEp-2 effectively fermented green-blanched vanilla pods kept at 10 °C during the sweating stage. GC-MS analysis showed that the methanol extract of non-coated, and B. vallismortis treated vanilla detected three (3) volatile compounds, whereas seven (7) components were obtained in B. tropicus and B. velezensis treatment. 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl was found in B. velezensis ZN-S10, B. tropicus KhEp-2, and B. vallismortis while it was not present in the control samples. This ketone compound suggested a Maillard reaction resulting in brown-increased aroma pods. Linoleic acid and Hexadecanoic acid ethyl esters were detected only in ZN-S10 strain-coated vanilla. A novel 3-Deoxy-d-mannoic lactone was detected only in B. vallismortis-treated vanilla characterized as a new compound in V. planifolia which suggested that the new compound can be altered with the coating of bacteria in vanilla during fermentation. Thus, the Bacillus strains improved the volatile profile and exhibited a new aroma and flavor profile of vanilla owing to bacteria fermentation during the curing process.

5.
Molecules ; 29(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39275080

RESUMEN

Binary terpenoid-based eutectic systems consisting of the natural substances camphene (CA), fenchol (FE), thymol (TH), menthol (ME), dodecanoic acid (DA), and 1-dodecanol (DO) are synthesized and screened for their Solid-Liquid Equilibrium (SLE) and eutectic compositions. Out of nine eutectic systems, 13 solvent compositions at eutectic points and next to them, in addition to the reference solvent, TH:ME, are synthesized and applied for the solvent extraction of the aromatic aldehydes vanillin (VAN), syringaldehyde (SYR), and p-hydroxybenzaldehyde (HYD) from an acidic aqueous model solution. The extraction efficiency is determined from aldehyde concentrations measured by High-Performance Liquid Chromatography (HPLC), taking into consideration mutual solubility measured by Karl Fischer titration (KF) and a Total Organic Carbon-analysis (TOC). Physicochemical properties, such as the density, viscosity, and stability of the solvents, are evaluated and discussed. Additionally, 1H-NMR measurements are performed to verify hydrogen bonding present in some of the solvents. The results show that all synthesized eutectic systems have a strong hydrophobic character with a maximum water saturation of ≤2.21 vol.% and solvent losses of ≤0.12 vol.% per extraction step. The hydrophobic eutectic solvents based on CA exhibit lower viscosities, lower mutual solubility, and lower extraction efficiency for the aromatic aldehydes when compared with FE-based solvents. The highest extraction efficiencies for VAN (>95%) and for SYR (>93%) at an extraction efficiency of 92.61% for HYD are achieved by the reference solvent TH:ME (50:50 mol.%). With an extraction efficiency of 93.08%, HYD is most preferably extracted by the FE-DO-solvent (80:20 mol.%), where the extraction efficiencies for VAN and SYR reach their maximum at 93.37% and 90.75%, respectively. The drawbacks of the high viscosities of 34.741 mPas of the TH:ME solvent and 31.801 mPas of the FE-DO solvent can be overcome by the CA-TH solvent, which has a viscosity of 3.436 mPas, while exhibiting extraction efficiencies of 71.92% for HYD, >95% for VAN, and >93% for SYR, respectively.

6.
J Agric Food Chem ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259043

RESUMEN

Vacuolar-type H+-ATPases (V-ATPases) play a crucial role in the life cycle of agricultural pests and represent a promising target for the development of novel insecticides. In this study, S18, a derivative of vanillin acquired from Specs database using a structure-based virtual screening methodology, was first identified as a V-ATPase inhibitor. It binds to subunit A of the enzyme with a Kd of 1 nM and exhibits insecticidal activity against M. separata. Subsequently, using S18 as the lead compound, a new series of vanillin derivatives were rationally designed and efficiently synthesized. and their biological activities were assessed. Among them, compound 3b-03 showed the strongest insecticidal activity against M. separata by effectively targeting the V-ATPase subunit A with Kd of 0.803 µM. Isothermal titration calorimetric measurements and docking results provided insights into its interaction with subunit A of V-ATPase, which could facilitate future research aimed at the development of novel chemical insecticides.

7.
Nat Prod Res ; : 1-6, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219162

RESUMEN

The objective of this study was to evaluate the antitumor properties of vanillin and divanillin in murine bone tumour cells. The action of the compounds on the cell viability of the normal (MC3T3-E1) and the tumour cell line (UMR-106) was evaluated. Action of the compounds in colony formation, migration, and production of reactive oxygen species (ROS) in tumour cells were evaluated along with proteomic analysis. Both compounds affected the cell viability of normal and tumour cell lines, being divanillin the more effective. For UMR-106, both compounds reduced the cell viability by less than 50%. Vanillin inhibited the migration process, and divanillin decreased ROS production (p < 0.05). The proteomic analysis showed that both compounds acted in the expression of proteins involved in tumour progression. Our results suggest that vanillin and divanillin are effective drugs against murine bone tumour cells. They can be a promising alternative for the adjuvant treatment of bone cancer.

8.
ACS Synth Biol ; 13(9): 2873-2886, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39208264

RESUMEN

Vanillin is a widely used flavoring compound in the food, pharmaceutical, and cosmetics area. However, the biosynthesis of vanillin from low-cost shikimic acid is significantly hindered by the low activity of the rate-limiting enzyme, caffeate O-methyltransferase (COMT). To screen COMT variants with improved conversion rates, we designed a biosensing system that is adaptable to the COMT-mediated vanillin synthetic pathway. Through the evolution of aldehyde transcriptional factor YqhC, we obtained a dual-responsive variant, MuYqhC, which positively responds to the product and negatively responds to the substrate, with no response to intermediates. Using the MuYqhC-based vanillin biosensor, we successfully identified a COMT variant, Mu176, that displayed a 7-fold increase in the conversion rate compared to the wild-type COMT. This variant produced 2.38 mM vanillin from 3 mM protocatechuic acid, achieving a conversion rate of 79.33%. The enhanced activity of Mu176 was attributed to an enlarged binding pocket and strengthened substrate interaction. Applying Mu176 to Bacillus subtilis increased the level of vanillin production from shikimic acid by 2.39-fold. Further optimization of the production chassis, increasing the S-adenosylmethionine supply and the precursor concentration, elevated the vanillin titer to 1 mM, marking the highest level of vanillin production from shikimic acid in Bacillus. Our work highlights the significance of the MuYqhC-based biosensing system and the Mu176 variant in vanillin production.


Asunto(s)
Benzaldehídos , Técnicas Biosensibles , Metiltransferasas , Benzaldehídos/metabolismo , Benzaldehídos/química , Técnicas Biosensibles/métodos , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Hidroxibenzoatos/metabolismo
9.
Int J Biol Macromol ; 278(Pt 1): 134596, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127291

RESUMEN

In this work, chitosan was combined with bio-vanillin (BV) and kaolin clay (KC) to create a novel antifungal and biodegradable food packaging film. The chitosan/KC/BV film exhibited an antioxidant capacity of 80 % as measured by DPPH assay, which was significantly higher than that of the chitosan film which has 55.6 %). The film also demonstrated strong antimicrobial activity with a reduction of 90 % in the growth of E. coli and S. aureus compared to the control. Additionally, the chitosan/KC/BV film showed a 75 % reduction in fungal growth compared to chitosan film. Furthermore, the water vapor permeability of the chitosan film was reduced as 5.38 with the addition of KC/BV. The degradation study revealed that the chitosan/KC film degraded by 88 % within 20 days under composting conditions. Additionally, fresh-cut apple slices were used to examine the effectiveness of chitosan/KC/BV film as a packaging material. The fruit's weight loss and browning index showed satisfactory food preservation. Our research suggests that the chitosan/KC/BV film has great potential for use in the food sector due to its strong antioxidant, antimicrobial, and biodegradable properties.


Asunto(s)
Antibacterianos , Antifúngicos , Antioxidantes , Benzaldehídos , Quitosano , Embalaje de Alimentos , Caolín , Quitosano/química , Quitosano/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Embalaje de Alimentos/métodos , Benzaldehídos/química , Benzaldehídos/farmacología , Caolín/química , Caolín/farmacología , Arcilla/química , Plásticos Biodegradables/química , Plásticos Biodegradables/farmacología , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Escherichia coli , Staphylococcus aureus
10.
J Biotechnol ; 394: 112-124, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39197754

RESUMEN

Vanillin is an inhibitor of lignocellulose hydrolysate, which can reduce the ability of Saccharomyces cerevisiae to utilize lignocellulose, which is an important factor limiting the development of the ethanol fermentation industry. In this study, mutants of vanillin-tolerant yeast named H6, H7, X3, and X8 were bred by heavy ion irradiation (HIR) combined with adaptive laboratory evolution (ALE). Phenotypic tests revealed that the mutants outperformed the original strain WT in tolerance, growth rate, genetic stability and fermentation ability. At 1.6 g/L vanillin concentration, the average OD600 value obtained for mutant strains was 0.95 and thus about 3.4-fold higher than for the wild-type. When the concentration of vanillin was 2.0 g/L, the glucose utilization rate of the mutant was 86.3 % within 96 h, while that of the original strain was only 70.0 %. At this concentration of vanillin, the mitochondrial membrane potential of the mutant strain recovered faster than that of the original strain, and the ROS scavenging ability was stronger. We analyzed the whole transcriptome sequencing map and the whole genome resequencing of the mutant, and found that DEGs such as FLO9, GRC3, PSP2 and SWF1, which have large differential expression multiples and obvious mutation characteristics, play an important role in cell flocculation, rDNA transcription, inhibition of DNA polymerase mutation and protein palmitoylation. These functions can help cells resist vanillin stress. The results show that combining HIR with ALE is an effective mutagenesis strategy. This approach can efficiently obtain Saccharomyces cerevisiae mutants with improved vanillin tolerance, and provide reference for obtaining robust yeast strains with lignocellulose inhibitor tolerance.


Asunto(s)
Benzaldehídos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Benzaldehídos/farmacología , Benzaldehídos/metabolismo , Fermentación , Iones Pesados , Evolución Molecular Dirigida/métodos , Mutación , Lignina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Etanol/metabolismo , Etanol/farmacología
11.
J Agric Food Chem ; 72(36): 20064-20076, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39196852

RESUMEN

Vanillin (VAN) is a common flavoring agent that can cause liver damage when ingested in large amounts. Nevertheless, the precise processes responsible for its toxicity remain obscure. The present research aimed to examine the metabolic activation of VAN and establish a potential correlation between its reactive metabolites and its cytotoxicity. In rat liver microsomes incubated with VAN, reduced glutathione/N-acetylcysteine (GSH/NAC), and nicotinamide adenine dinucleotide phosphate (NADPH), two conjugates formed from GSH and one conjugate derived from NAC were identified. We also discovered one GSH conjugate in both the bile obtained from rats and the rat primary hepatocytes that were subjected to VAN exposure. Additionally, the NAC conjugate exerted in the urine of VAN-treated rats was observed. These results indicate that a quinone intermediate was produced from VAN both in vitro and in vivo. Next, we identified CYP3A as the main enzyme that initiated the bioactive pathway of VAN. After the activity of CYP3A was selectively inhibited by ketoconazole (KTZ), the generation of the GSH conjugate declined in hepatocytes exposed to VAN. Furthermore, the vulnerability to VAN-induced toxicity was alleviated by KTZ in hepatocytes. Thus, we propose that the cytotoxicity of VAN may derive from metabolic activation triggered by CYP3A.


Asunto(s)
Activación Metabólica , Benzaldehídos , Citocromo P-450 CYP3A , Hepatocitos , Microsomas Hepáticos , Ratas Sprague-Dawley , Animales , Benzaldehídos/metabolismo , Benzaldehídos/farmacología , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Ratas , Masculino , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Glutatión/metabolismo , Aromatizantes/metabolismo , Aromatizantes/química , Aromatizantes/toxicidad
12.
Bioresour Technol ; 408: 131190, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39094966

RESUMEN

Production of the high industrial value cis,cis-muconic acid (ccMA) from renewable biomasses is of main interest especially when biological (green) processes are used. We recently generated a E. coli strain expressing five recombinant enzymes to convert vanillin (VA, from lignin) into ccMA. Here, we optimized a growing cell approach in bioreactor for the ccMA production. The medium composition, fermentation conditions, and VA addition were tuned: pulse-feeding VA at 1 mmol/h allowed to reach 5.2 g/L of ccMA in 48 h (0.86 g ccMA/g VA), with a productivity 4-fold higher compared to the resting cells approach, thus resulting in significantly lower E-factor and Process Mass Intensity green metric parameters. The recovered ccMA has been used as building block to produce a fully bioderived polymer with rubber-like properties. The sustainable optimized bioprocess can be considered an integrated approach to develop a platform for bio-based polymers production from renewable feedstocks.


Asunto(s)
Reactores Biológicos , Escherichia coli , Ácido Sórbico , Ácido Sórbico/análogos & derivados , Ácido Sórbico/metabolismo , Escherichia coli/metabolismo , Fermentación , Benzaldehídos/metabolismo , Polímeros/química , Biotecnología/métodos , Biomasa
13.
Neotrop Entomol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141216

RESUMEN

This study investigates the toxic effects of the insecticide spinetoram on the model organism Bombyx mori (Linnaeus) and explores the potential ameliorative properties of O-Vanillin. Sub-lethal concentrations of spinetoram were given to silkworm larvae via oral feed, resulting in reduced body weight, larval length, and impaired cocoon characteristics. A study of the enzymatic and non-enzymatic antioxidants revealed oxidative stress in the gut, fat body, and silk gland tissues, characterized by decreased antioxidants and increased lipid peroxidation. However, post-treatment with O-Vanillin effectively mitigated these toxic effects, preserving antioxidant capacities and preventing lipid peroxidation. Additionally, O-Vanillin prevented the loss of body weight and improved cocoon characteristics. At the histological level, spinetoram exposure caused mild histological damage in the gut, fat body, and silk gland. However, O-Vanillin post-treatment had ameliorative effects and mitigated the histological damages. To delve deeper into the mechanism of amelioration of O-Vanillin, in silico studies were used to study the interaction between an important xenobiotic metabolism protein of the Bombyx mori, i.e., Cytochrome p450, specifically CYP9A19, and O-Vanillin. We performed blind molecular docking followed by molecular dynamic simulation, and the results demonstrated stable binding interactions between O-Vanillin and CYP9A19, a cytochrome P450 protein in silkworm, belonging to the subfamily CYP9A, suggesting a potential role for O-vanillin in modulating xenobiotic metabolism.

14.
Arch Pharm (Weinheim) ; : e2400403, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101844

RESUMEN

Different vanillin-based aldehydes were used to synthesize novel tetrahydropyrimidines (THPMs) via conventional Biginelli reaction. The THPMs were tested against human normal cells (MRC-5) and cancer cell lines (HeLa, K562, and MDA-MB-231). With IC50 values of 10.65, 10.70, and 12.76 µM, compounds 4g, 4h, and 4i exerted the strongest cytotoxic effects against K562 cells. The best activity was achieved for 4g on MDA-MB-231 cells (IC50 = 9.20 ± 0.14 µM). The effects of compounds 4g, 4h, and 4i on the cell-cycle phase distribution of K562 cells were analyzed. Principal component analysis was carried out for the chemometrics analysis to comprehend the relationship between the anticancer activity of the THPMs, pharmacokinetic properties, and partition coefficients, as well as the relationship between the chromatographic behavior and retention parameters. The highest retention rates are found for molecules 4g, 4h, and 4i, which have the longest carbon chains, indicating that the length of the alkyl chain positively affects the molecule's anticancer activity but only if the number of carbon atoms is not higher than seven. Additionally, molecular docking analysis was performed to determine the preferred binding modes of the investigated ligands (4g, 4h, and 4i) with a DNA dodecamer and bovine serum albumin.

15.
Artículo en Inglés | MEDLINE | ID: mdl-39186188

RESUMEN

Around 20% of the human population is distressed. Previous studies have looked into the relationship between restraint immobilization stress (IS) and sexual behavior in male rats. The current study aimed to provide a brief explanation of the mechanisms that generated testicular injury with chronic IS and an attempt to evaluate the mechanisms and effects of vanillin as a novel protective agent. Forty-eight adult male albino rats were divided into six groups: control, vanillin-treated, chronic 2-h IS, 2-h stressed-vanillin-treated, chronic 6-h IS, and 6-h stressed-vanillin treated. The rats were sacrificed, and blood samples were collected for biochemical study. The testes were processed for biochemical and histological study, as well as histological Johnsen score. The results showed that prolonged IS increased both corticosterone and TNF-α levels as well as decreased testosterone, luteinizing hormone, catalase, and Nrf2 levels. This effect was more pronounced after 6 h of IS compared to 2 h. It also induced various testicular injuries with weak ZO-1 and CD34 immunoreactions. On the contrary, vanillin improved all mentioned biochemical and histological alternations induced by stress. Additionally, computational molecular docking analyses were conducted on the compound vanillin within the active site of Zona Occludens-1 (PDB ID: 2JWE). The results demonstrated remarkable docking scores and binding affinity, corroborating its potential protective efficacy. It could be concluded that vanillin is a promising treatment alternative for protecting testicular tissue from the harmful effects of IS via its antioxidant and anti-inflammatory properties.

16.
Polymers (Basel) ; 16(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39204497

RESUMEN

Developing recyclable and self-healing non-isocyanate polyurethane (NIPU) from renewable resources to replace traditional petroleum-based polyurethane (PU) is crucial for advancing green chemistry and sustainable development. Herein, a series of innovative cross-linked Poly(hydroxyurethane-urea)s (PHUUs) were prepared using renewable carbon dioxide (CO2) and vanillin, which displayed excellent thermal stability properties and solvent resistance. These PHUUs were constructed through the introduction of reversible hydrogen and imine bonds into cross-linked polymer networks, resulting in the cross-linked PHUUs exhibiting thermoplastic-like reprocessability, self healing, and closed-loop recyclability. Notably, the results indicated that the VL-TTD*-50 with remarkable hot-pressed remolding efficiency (nearly 98.0%) and self-healing efficiency (exceeding 95.0%) of tensile strength at 60 °C. Furthermore, they can be degraded in the 1M HCl and THF (v:v = 2:8) solution at room temperature, followed by regeneration without altering their original chemical structure and mechanical properties. This study presents a novel strategy for preparing cross-linked PHUUs with self-healing and closed-loop recyclability from renewable resources as sustainable alternatives for traditional petroleum-based PUs.

17.
Inflammopharmacology ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207637

RESUMEN

BACKGROUND: The nucleus pulposus (NP) degradation is a primary factor in intervertebral disk degeneration (IVD) and a major contributor to low back pain. Intervertebral disk-derived stem cell (IVDSC) therapy presents a promising solution, yet identifying suitable cell carriers for NP transplantation remains challenging. The present study investigates this issue by developing smart injectable hydrogels incorporating vanillin (V) and hyaluronic acid (HA) encapsulated with IVDSCs to facilitate IVD regeneration. MATERIALS AND METHODS: The hydrogel was cross linked by carbodiimide-succinimide (EDC-NHS) method. Enhanced mechanical properties were achieved by integrating collagen and HA into the hydrogel. The rheological analysis revealed the pre-gel viscoelastic and shear-thinning characteristics. RESULTS: In vitro, cell viability was maintained up to 500 µg/mL, with a high proliferation rate observed over 14 days. The hydrogels supported multilineage differentiation, as confirmed by osteogenic and adipogenic induction. Anti-inflammatory effects were demonstrated by reduced cytokine release (TNF-α, IL-6, IL-1ß) after 24 h of treatment. Gene expression studies indicated elevated levels of chondrocyte markers (Acan, Sox9, Col2). In vivo, hydrogel injection into the NP was monitored via X-ray imaging, showing a significant increase in disk height index (DHI%) after 8 weeks, alongside improved histologic scores. Biomechanical testing revealed that the hydrogel effectively mimicked NP properties, enhancing compressive stiffness and reducing neutral zone stiffness post-denucleation. CONCLUSION: The results suggest that the synthesized VCHA-NP hydrogel can be used as an alternative to NPs, offering a promising path for IVD regeneration.

18.
Microbiol Spectr ; 12(9): e0068124, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39046261

RESUMEN

Quorum sensing (QS) is a cell-cell signaling system that enables bacteria to coordinate population density-dependent changes in behavior. This chemical communication pathway is mediated by diffusible N-acyl L-homoserine lactone signals and cytoplasmic signal-responsive LuxR-type receptors in Gram-negative bacteria. As many common pathogenic bacteria use QS to regulate virulence, there is significant interest in disrupting QS as a potential therapeutic strategy. Prior studies have implicated the natural products salicylic acid, cinnamaldehyde, and other related benzaldehyde derivatives as inhibitors of QS in the opportunistic pathogen Pseudomonas aeruginosa, yet we lack an understanding of the mechanisms by which these compounds function. Herein, we evaluate the activity of a set of benzaldehyde derivatives using heterologous reporters of the P. aeruginosa LasR and RhlR QS signal receptors. We find that most tested benzaldehyde derivatives can antagonize LasR or RhlR reporter activation at micromolar concentrations, although certain molecules also cause mild growth defects and nonspecific reporter antagonism. Notably, several compounds showed promising RhlR or LasR-specific inhibitory activities over a range of concentrations below that causing toxicity. ortho-Vanillin, a previously untested compound, was the most promising within this set. Competition experiments against the native ligands for LasR and RhlR revealed that ortho-vanillin can interact competitively with RhlR but not with LasR. Overall, these studies expand our understanding of benzaldehyde activities in the LasR and RhlR receptors and reveal potentially promising effects of ortho-vanillin as a small molecule QS modulator against RhlR. IMPORTANCE: Quorum sensing (QS) regulates many aspects of bacterial pathogenesis and has attracted much interest as a target for anti-virulence therapies over the past 30 years, for example, antagonists of the LasR and RhlR QS receptors in Pseudomonas aeruginosa. Potent and selective QS inhibitors remain relatively scarce. However, natural products have provided a bounty of chemical scaffolds with anti-QS activities, but their molecular mechanisms are poorly characterized. The current study serves to fill this void by examining the activity of an important and wide-spread class of natural product QS modulators, benzaldehydes, and related derivatives, in LasR and RhlR. We demonstrate that ortho-vanillin can act as a competitive inhibitor of RhlR, a receptor that has emerged and may supplant LasR in certain settings as a target for P. aeruginosa QS control. The results and insights provided herein will advance the design of chemical tools to study QS with improved activities and selectivities.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Benzaldehídos , Productos Biológicos , Pseudomonas aeruginosa , Percepción de Quorum , Transactivadores , Percepción de Quorum/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Benzaldehídos/farmacología , Benzaldehídos/química , Productos Biológicos/farmacología , Productos Biológicos/química , Transactivadores/metabolismo , Transactivadores/antagonistas & inhibidores , Transactivadores/genética , Antibacterianos/farmacología
19.
J Biotechnol ; 393: 49-60, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39025369

RESUMEN

The use of lignocellulosic biomass to create natural flavor has drawn attention from researchers. A key flavoring ingredient that is frequently utilized in the food industry is vanillin. In this present study, Pediococcus acidilactici PA VIT effectively involved in the production of bio-vanillin by using Ferulic acid as an intermediate with a yield of 11.43 µg/mL. The bio-vanillin produced by Pediococcus acidilactici PA VIT was examined using FTIR, XRD, HPLC, and SEM techniques. These characterizations exhibited a unique fingerprinting signature like that of standard vanillin. Additionally, the one variable at a time method, placket Burmann method, and response surface approach, were employed to optimize bio-vanillin. Based on the central composite rotary design, the most important process factors were determined such as agitation speed, substrate concentration, and inoculum size. After optimization, bio-vanillin was found to have tenfold increase, with a maximum yield of 376.4 µg/mL obtained using the response surface approach. The kinetic study was performed to analyze rate of reaction and effect of metal ions in the production of bio-vanillin showing Km of 10.25, and Vmax of 1250 were required for the reaction. The metal ions that enhance the yield of bio-vanillin are Ca2+, k+, and Mg2+ and the metal ions that affects the yield of bio-vanillin are Pb+ and Cr+ were identified from the effect of metal ions in the bio-vanillin production.


Asunto(s)
Benzaldehídos , Ácidos Cumáricos , Pediococcus acidilactici , Ácidos Cumáricos/metabolismo , Ácidos Cumáricos/química , Benzaldehídos/metabolismo , Benzaldehídos/química , Pediococcus acidilactici/metabolismo , Cinética , Fermentación
20.
J Ethnopharmacol ; 334: 118542, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38992404

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dried roots of Peucedanum decursivum, a traditional Chinese medicine (TCM), has historically respiratory diseases such as cough, thick phlegm, headache, fever, and gynecological diseases, rheumatoid arthritis, and nasopharyngeal carcinoma. AIM OF THE STUDY: Made an endeavor to evaluate the research trajectory of P. decursivum, comprehensively discern its developmental status, and offer a guideline for future investigations. MATERIALS AND METHODS: A meticulous search of literatures and books from 1955 to 2024 via databases like PubMed, Web of Science and CNKI was conducted, including topics and keywords of " P. decursivum" "Angelica decursivum" and "Zihua Qianhu". RESULTS: P. decursivum and its prescriptions have traditionally been used for treating phlegm-heat cough, wind-heat cough, gastrointestinal diseases, pain relief and so on. It contains 234 identified compounds, encompassing coumarins, terpenes, volatile oils, phenolic acids, fatty acids and derivatives. It exhibits diverse pharmacological activities, including anti-asthmatic, anti-inflammatory, antioxidant effects, anti-hypertensive, anti-diabetic, anti-Alzheimer, and anti-cancer properties, primarily attributed to coumarins. Microscopic identification, HPLC fingerprinting, and bioinformatics identification are the primary methods currently used for the quality control. CONCLUSION: P. decursivum demonstrates anti-asthmatic, anti-inflammatory, and antioxidant effects, aligning with its traditional use. However, experimental validation of its efficacy against phlegm and viruses is needed. Additionally, analgesic effects mentioned in historical texts lack modern pharmacological studies. Numerous isolated compounds exhibit highly valuable medicinal properties. Future research can delve into exploring these substances further. Rigorous of heavy metal contamination, particularly Cd and Pb, is necessary. Simultaneously, investigating its pharmacokinetics and toxicity in humans is crucial for the safety.


Asunto(s)
Apiaceae , Etnobotánica , Etnofarmacología , Fitoquímicos , Control de Calidad , Humanos , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/uso terapéutico , Apiaceae/química , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA