Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 196: 105631, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945263

RESUMEN

Procymidone (PCM) below the no-observed-adverse-effect-level (NOAEL) has previously been proven to induce ovarian and uterine damage in adolescent mice due to its raised circRNA Scar, decreased circZc3h4, and overactivated unfolded protein response (UPR). Also, 4-phenylbutyric acid (4-PBA) inhibits histone deacetylase and endoplasmic reticulum stress, reduces UPR, improves metabolism, and ensures homeostasis within the endoplasmic reticulum. In this study, 20, 40 and 80 mM of 4-PBA were utilized respectively to intervene the damage caused by 1.0 × 10-5 M PCM to ovaries and uterus in vitro culture. Besides, 100 mg/kg /d 4-PBA was intraperitoneally injected to female adolescent mice before, during and after oral administration of 100 mg/kg /d PCM for prevention and cure to observe tissue changes in the ovaries and uteri, and levels of circRNA Scar, circZc3h4 and UPR members. Our findings demonstrated that in vitro experiments, all doses of 4-PBA could inhibit ovarian and uterine damage caused by PCM, and the effect of 80 mM was especially noticeable. In the in vivo experiments, the best results were obtained when PCM was given with simultaneous 4-PBA intervention, i.e., minimal ovarian and uterine damage. Both in vivo and in vitro, 4-PBA in the ovary and uterus resulted in decreased circRNA Scar levels, increased circZc3h4 abundance, and moderately elevated levels of UPR members. So, it is suggested that 4-PBA moderately activates UPR, partially or completely antagonizing the elevated circRNA Scar and decreased circZc3h4 and consequently preventing PCM-induced ovarian and uterine damage effectively in adolescent mice.


Asunto(s)
Ovario , ARN Circular , Femenino , Ratones , Animales , Cicatriz , Respuesta de Proteína Desplegada , Útero
2.
Placenta ; 119: 8-16, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35066308

RESUMEN

INTRODUCTION: Placenta accreta spectrum (PAS) disorder is one of the major complications resulting in maternal death and serious adverse pregnancy outcomes. Uterine damage - principally that associated with cesarean section - is the leading risk factor for the development of PAS. However, the underlying pathogenesis of PAS related to uterine damage remains unclear. METHODS: For this study, we constructed a mouse PAS model using hysterotomy to simulate a cesarean section in humans. Pregnant mice were sacrificed on embryonic days 12.5 (E12.5) and E17.5. Trophoblast invasion and placental vascularization were analyzed using Hematoxylin-Eosin (H&E) staining and immunohistochemistry (IHC), and the proportions of immune cells at the maternal-fetal interface were analyzed using flow cytometry. We analyzed the expressions of genes in the decidua and placenta using RNA sequencing and subsequent validation by QPCR, and measured serum angiogenic factors by ELISA. RESULTS: Uterine damage led to increased trophoblast invasion and placental vascularization, with extensive changes to the immune-cell profiles at the maternal-fetal interface. The proportions of T and NK cells in the deciduas diminished significantly, with the decidual NK cells and M - 2 macrophages showing the greatest decline. The expression of TNF-α and IL4 was upregulated in the deciduas, while that of IFN-γ and IL10 was downregulated significantly. The expression of Mmp2, Mmp9, Mmp3, and Dock4 was significantly elevated in the placenta, and the serum levels of anti-angiogenic factors were significantly attenuated. DISCUSSION: Uterine damage can cause immune imbalance at the maternal-fetal interface, which may contribute to abnormal trophoblast invasion and enhanced vascularization of the mouse placenta.


Asunto(s)
Intercambio Materno-Fetal/inmunología , Neovascularización Fisiológica , Procedimientos Quirúrgicos Obstétricos/efectos adversos , Placenta Accreta/etiología , Trofoblastos/fisiología , Animales , Femenino , Ratones Endogámicos C57BL , Embarazo , Distribución Aleatoria
3.
Tissue Eng Regen Med ; 16(2): 119-129, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30989039

RESUMEN

BACKGROUND: Thin or damaged endometrium causes uterine factor-derived infertility resulting in a failure of embryonic implantation. Regeneration of endometrium is a major issue in gynecology and reproductive medicine. Various types of cells and scaffolds were studied to establish an effective therapeutic strategy. For this type of investigations, production of optimal animal models is indispensable. In this study, we tried to establish various murine uterine damage models and compared their features. METHODS: Three to ten-week-old C57BL/6 female mice were anesthetized using isoflurane. Chemical and mechanical methods using ethanol (EtOH) at 70 or 100% and copper scraper were compared to determine the most efficient condition. Damage of uterine tissue was induced either by vaginal or dorsal surgical approach. After 7-10 days, gross and microscopic morphology, safety and efficiency were compared among the groups. RESULTS: Both chemical and mechanical methods resulted in thinner endometrium and reduced number of glands. Gross morphology assessment revealed that the damaged regions of uteri showed various shapes including shrinkage or cystic dilatation of uterine horns. The duration of anesthesia significantly affected recovery after procedure. Uterine damage was most effectively induced by dorsal approach using 100% EtOH treatment compared to mechanical methods. CONCLUSION: Taken together, murine uterine damage models were most successfully established by chemical treatment. This production protocols could be applied further to larger animals such as non-human primate.

4.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-761898

RESUMEN

BACKGROUND: Thin or damaged endometrium causes uterine factor-derived infertility resulting in a failure of embryonic implantation. Regeneration of endometrium is a major issue in gynecology and reproductive medicine. Various types of cells and scaffolds were studied to establish an effective therapeutic strategy. For this type of investigations, production of optimal animal models is indispensable. In this study, we tried to establish various murine uterine damage models and compared their features. METHODS: Three to ten-week-old C57BL/6 female mice were anesthetized using isoflurane. Chemical and mechanical methods using ethanol (EtOH) at 70 or 100% and copper scraper were compared to determine the most efficient condition. Damage of uterine tissue was induced either by vaginal or dorsal surgical approach. After 7-10 days, gross and microscopic morphology, safety and efficiency were compared among the groups. RESULTS: Both chemical and mechanical methods resulted in thinner endometrium and reduced number of glands. Gross morphology assessment revealed that the damaged regions of uteri showed various shapes including shrinkage or cystic dilatation of uterine horns. The duration of anesthesia significantly affected recovery after procedure. Uterine damage was most effectively induced by dorsal approach using 100% EtOH treatment compared to mechanical methods. CONCLUSION: Taken together, murine uterine damage models were most successfully established by chemical treatment. This production protocols could be applied further to larger animals such as non-human primate.


Asunto(s)
Animales , Femenino , Humanos , Ratones , Anestesia , Cobre , Dilatación , Endometrio , Etanol , Ginecología , Cuernos , Infertilidad , Isoflurano , Modelos Animales , Primates , Regeneración , Medicina Reproductiva , Útero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA