Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 479: 135739, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39243536

RESUMEN

Bioelectrochemical system (BES) is a promising technology for uranium recovery, which also enables simultaneous electricity generation. However, the bioelectrochemical recovery of uranium is hindered by its slow process due to the low reduction potential provided by microorganisms. Herein, we developed an innovative bioelectrochemical-photocatalytic system (BEPS) that combines the advantages of BES and photocatalysis, achieving enhanced uranium removal and recovery. The photogenerated electrons in BEPS possess a more negative reduction potential and stronger reduction capability than microbial electrons in BES, significantly accelerating uranium reduction and deposition on the electrode surface. Moreover, the electrons from the bioanode combine with photogenerated holes through the external circuit, effectively inhibiting the recombination of charge carriers. The BEPS significantly enhances uranium removal efficiency, kinetic, and electricity generation through a synergistic coupling mechanism between the bioanode and photocathode. Notably, the UO2 deposited on the electrode surface exhibited a recovery efficiency of 98.21 ± 1.37%, and the regenerated electrode sustained its photoelectric response and uranium removal capabilities. Our findings highlight the potential of the BEPS as an effective technology for uranium recovery and electricity generation.

2.
Water Res ; 258: 121817, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810598

RESUMEN

Electrochemical uranium extraction (EUE) from seawater is a very promising strategy, but its practical application is hindered by the high potential for electrochemical system, as well as the low selectivity, efficiency, and poor stability of electrode. Herein, we developed creatively a low potential strategy for persistent uranium recovery by electrochemistry-assisted in-situ regeneration of oxygen vacancies and Ti(III) active sites coupled with indirect reduction of uranium, finally achieving high selectivity, efficient and persistent uranium recovery. As-designed titanium dioxide rich in oxygen vacancies (TiO2-VO) electrode displayed an EUE efficiency of ∼99.9 % within 180 min at a low potential of 0.09 V in simulated seawater with uranium of 5∼20 ppm. Moreover, the TiO2-VO electrode also showed high selectivity (89.9 %) to uranium, long-term cycling stability and antifouling activity in natural seawater. The excellent EUE property was attributed to the fact that electrochemistry-assisted in-situ regeneration of oxygen vacancies and Ti(III) active sites enhanced EUE cycling process and achieved persistent uranium recovery. The continuous regeneration of oxygen vacancies not only reduced the adsorption energy of U(VI)O22+ but also serve as a storage and transportation channel for electrons, accelerating electron transfer from Ti(III) to U(VI) at solid-liquid interface and promoting EUE kinetic rate.


Asunto(s)
Oxígeno , Agua de Mar , Titanio , Uranio , Uranio/química , Titanio/química , Oxígeno/química , Agua de Mar/química , Electrodos , Electroquímica , Técnicas Electroquímicas , Contaminantes Radiactivos del Agua/química
3.
J Environ Manage ; 354: 120310, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377753

RESUMEN

The generation of uranium-containing wastewater (UCW) during different stages of uranium mining, processing, and utilization presents a significant ecological and biospheric threat. Consequently, it is crucial for both sustainable development and the protection of human health to adopt appropriate methods for the treatment of UCW as well as the separation and enrichment of uranium. This study conducted a comprehensive search of the Web of Science Core Collection (WOSCC) database for publications related to UCW treatment between 1990 and 2022 to gain insight into current trends in the field. Subsequently, the annual publications, WOSCC categories, geographical distribution, major collaborations, prolific authors, influential journals, and highly cited publications were the subjects of a biliometric analysis that was subsequently carried out. The study findings indicate a significant rise in the overall number of publications in the research field between 1990 and 2022. China, India, and the USA emerged as the primary contributors in terms of publication count. The Chinese Academy of Sciences, the East China University of Technology, and the University of South China were identified as the key research institutions in this field. Furthermore, a majority of the publications in this field were distributed through prestigious journals with high impact factors, such as the Journal of Radioanalytical and Nuclear Chemistry. The top 3 journals were Radioanalytical and Nuclear Chemistry, Chemical Engineering Journal, and Journal of Hazardous Materials. The keyword co-occurrence and burst analysis revealed that the current research on UCW treatment mainly focuses on adsorption-based treatment methods, environmentally functional materials, uranium recovery, etc. Furthermore, the study of the adsorption efficiency of different adsorbent materials, as well as the strengthening and improvement of adsorbent material selectivity and capacity for the recovery of uranium, represents a research hotspot in the field of UCW treatment in the future. This study conducts a comprehensive overview of the current status and prospects of the UCW treatment, which can provide a valuable reference for gaining insights into the development trajectory of the UCW treatment.


Asunto(s)
Bibliometría , Uranio , Aguas Residuales , Aguas Residuales/química , Minería , China
4.
Front Chem ; 11: 1292620, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38124704

RESUMEN

In this research, the recovery of uranium from the phosphate ore of the Sheikh Habil-Iran mine using flotation/calcination-leaching processes has been investigated. A 75-150 µm phosphate ore particle size, sodium oleate as a collector with a concentration of 2,000 g/ton of rock, pH = 10, and 5 min flotation time were obtained as the optimum parameters of flotation using the reverse method, leading to phosphate ore with a grade of 180 ppm UO2, 36.1% P2O5, 7.22% SiO2, and CaO/P2O5 = 1.23. The optimum calcination parameters were selected as 100 µm phosphate ore particles size at D80, 900°C temperature, and 2 h heating time, which resulted in phosphate ore with a grade of 173 ppm UO2 and 31.9% P2O5. An L/S (liquid to solid ratio) = 5, 3 M sulfuric acid concentration, 80°C temperature, and 5 h leaching time were obtained as the optimum leaching parameters using the response surface methodological approach. The efficiency of uranium recovery from phosphate ore pre-treated by flotation and calcination methods was 84.2% and 75.2%, respectively. The results indicated that flotation has superiority over calcination as a pre-treatment method of phosphate ore in the Sheikh Habil-Iran mine.

5.
Ecotoxicol Environ Saf ; 259: 115053, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37224785

RESUMEN

The development of nuclear energy has led to the depletion of uranium resources and now presents the challenge of treating radioactive wastewater. Extracting uranium from seawater and nuclear wastewater has been identified as an effective strategy for addressing these issues. However, extracting uranium from nuclear wastewater and seawater is still extremely challenging. In this study, an amidoxime-modified feather keratin aerogel (FK-AO aerogel) was prepared using feather keratin for efficient uranium adsorption. The FK-AO aerogel showed an impressive adsorption capacity of 585.88 mg·g-1 in an 8 ppm uranium solution, with a calculated maximum adsorption capacity of 990.10 mg·g-1. Notably, the FK-AO aerogel demonstrated excellent selectivity for U(VI) in simulated seawater that contained coexisting heavy metal ions. In a uranium solution having a salinity of 35 g·L-1 and a concentration of 0.1-2 ppm, the FK-AO aerogel achieved a uranium removal rate of greater than 90 %, indicating its effectiveness in adsorbing uranium in environments having high salinity and low concentration. This suggests that FK-AO aerogel is an ideal adsorbent for extracting uranium from seawater and nuclear wastewater, and it is also expected that it could be used in industrial applications for extracting uranium from seawater.


Asunto(s)
Uranio , Adsorción , Aguas Residuales , Biomasa , Concentración de Iones de Hidrógeno , Agua , Queratinas
6.
Nanomaterials (Basel) ; 13(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36678117

RESUMEN

Aerogels are a class of lightweight, nanoporous, and nanostructured materials with diverse chemical compositions and a huge potential for applications in a broad spectrum of fields. This has led the IUPAC to include them in the top ten emerging technologies in chemistry for 2022. This review provides an overview of aerogel-based adsorbents that have been used for the removal and recovery of uranium from aqueous environments, as well as an insight into the physicochemical parameters affecting the adsorption efficiency and mechanism. Uranium removal is of particular interest regarding uranium analysis and recovery, to cover the present and future uranium needs for nuclear power energy production. Among the methods used, such as ion exchange, precipitation, and solvent extraction, adsorption-based technologies are very attractive due to their easy and low-cost implementation, as well as the wide spectrum of adsorbents available. Aerogel-based adsorbents present an extraordinary sorption capacity for hexavalent uranium that can be as high as 8.8 mol kg−1 (2088 g kg−1). The adsorption data generally follow the Langmuir isotherm model, and the kinetic data are in most cases better described by the pseudo-second-order kinetic model. An evaluation of the thermodynamic data reveals that the adsorption is generally an endothermic, entropy-driven process (ΔH0, ΔS0 > 0). Spectroscopic studies (e.g., FTIR and XPS) indicate that the adsorption is based on the formation of inner-sphere complexes between surface active moieties and the uranyl cation. Regeneration and uranium recovery by acidification and complexation using carbonate or chelating ligands (e.g., EDTA) have been found to be successful. The application of aerogel-based adsorbents to uranium removal from industrial processes and uranium-contaminated waste waters was also successful, assuming that these materials could be very attractive as adsorbents in water treatment and uranium recovery technologies. However, the selectivity of the studied materials towards hexavalent uranium is limited, suggesting further developments of aerogel materials that could be modified by surface derivatization with chelating agents (e.g., salophen and iminodiacetate) presenting high selectivity for uranyl moieties.

7.
J Hazard Mater ; 436: 128983, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35525216

RESUMEN

Ultrathin fibers can increase the contact area between adsorbents and seawater during the uranium extraction process; however, their construction usually aggravates the complex spinning technology and lowers their mechanical strength. Meanwhile, high strength and antifouling ability are essential for ocean adsorbents to withstand the complex natural environment and microbial systems. Herein, we design high-strength and anti-biofouling poly(amidoxime) nanofiber membranes (HA-PAO NFMs) via a supramolecular crosslinking. Bacterial cellulose supplies the NFMs with ultrathin fiber structure, and large amounts of adsorption ligands are immobilized on the framework via the crosslinking with antibacterial ions. Thus, different from other fibers, HA-PAO NFMs achieve ultrathin diameter (20-30 nm), high BET area (51 m2 g-1), and excellent mechanical strength (13.6 MPa). The uranium adsorption capacity reaches to 409 mg-U/g-Ads in the simulated seawater, 99.2% uranium can be removed from the U-contained wastewater, and the adsorption process can be observed by the naked eye due to the significant color changes. The inhibition zones indicate their excellent anti-biofouling ability, which contributes to 1.83 times more uranium extraction amount from natural seawater than the non-antifouling adsorbents. Furthermore, they display a long service life and can be large-scale prepared, and the HA-PAO NFMs have potential in the massive uranium recovery.


Asunto(s)
Incrustaciones Biológicas , Nanofibras , Uranio , Adsorción , Incrustaciones Biológicas/prevención & control , Nanofibras/química , Agua de Mar/química , Uranio/química , Aguas Residuales
8.
Chemosphere ; 286(Pt 1): 131626, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34346333

RESUMEN

Extraction uranium from complicated aqueous solutions (seawater and nuclear wastewater) has been promoting the development of multi-functional adsorbents with high adsorption capacities and high selectivity. Here, we proposed a co-immobilization approach to preparing uranium adsorbents. Due to specific recognition and binding between functional groups, bayberry tannin (BT) and hydrous titanium oxide (HTO) were co-immobilized onto nano collagen fibrils (NCFs). The adsorption performances of NCFs-HTO-BT to uranium were systematically investigated in two aqueous systems, including nuclear wastewater and seawater. Results proved that NCFs-HTO-BT possessed the remarkable adsorption capacities and affinities for uranium in wastewater (393.186 mg g-1) and spiked seawater (14.878 mg g-1) with the uranium concentration of 320 mg g-1 and 8 mg g-1, respectively. Based on characteristic analysis of the adsorbent before and after uranium adsorption, the hydroxyl groups of HTO, the adjacent phenolic hydroxyl groups of BT, and nitrogen-containing and oxygen-containing functional groups of NCFs were active sites for uranium adsorption.


Asunto(s)
Myrica , Uranio , Adsorción , Agua de Mar , Taninos , Titanio , Aguas Residuales
9.
J Environ Manage ; 299: 113587, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34479154

RESUMEN

The purpose of this study was modification of activated carbon (AC) to prepare a new selective sorbent for removal of uranium ion. The modification was performed by introducing carboxyl groups onto AC using ammonium persulfate (APS) in sulfuric acid solution followed by functionalization with 2-aminobenzoic acid (ABA) as a selective ligand for U (VI) ion (UO22+) adsorption. The characterization of the synthetized sorbent (AC-ABA) was carried out through several methods including potentiometry, scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction and FT-IR to confirm successful functionalization of the sorbent surface with oxygen and amine groups. The sorption of U (VI) on the unmodified AC and AC-ABA was investigated as a function of contact time, sorbent content, initial uranium concentration, solution pH, and temperature using batch sorption technique. In addition, the effect of various parameters on the U (VI) sorption capacity was optimized by the response surface methodology as a potent experimental design method. The results indicated that sorption of U (VI) under the optimal conditions was significantly improved onto AC-ABA compared to AC. Kinetic studies displayed that the sorption process reached equilibrium after 100 min and followed the pseudo-second-order rate equation. The isothermal data fitted better with the Langmuir model than the Freundlich model. The maximum sorption capacity of AC-ABA for U(VI) was obtained to be 194.2 mg g-1 by the Langmuir model under optimum conditions, which demonstrates the sorption capacity has been improved by the modification process. The thermodynamic parameters (ΔH, ΔS and ΔG) indicated that sorption of uranium onto AC-ABA was an endothermic and spontaneous process. The sorption studies on radioactive effluents of the nuclear fuel plant represented high selectivity of AC-ABA for removal of uranium in the presence of other metal ions, and the selectivity coefficients significantly improved after modification of the sorbent. Application of AC-ABA for treatment of industrial effluents containing heavy and radioactive metal ions show high potential and capability of the proposed method.


Asunto(s)
Uranio , Carbón Orgánico , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Uranio/análisis , ortoaminobenzoatos
10.
J Hazard Mater ; 416: 125885, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492823

RESUMEN

Iron-based materials have been widely used for treating uranium-containing wastewater. However, the iron-uranium solids originating by treating radioactive water through pollutant transfer methods has become a new uncontrolled source of persistent radioactive pollution. The safe disposal of such hazardous waste is not yet well-resolved. The electrochemical mineralization method was developed to rapidly purify uranium-containing wastewater through lattice doping in magnetite and recover uranium without generating any pollutants. An unexpected isolation of U3O8 from uranium-doped magnetite was discovered through in-situ XRD with a temperature variation from 300 °C to 700 °C. Through HRTEM and DFT calculation, it was confirmed that the destruction of the inverse spinel crystal structure during the gradual transformation of magnetite into γ-Fe2O3 and α-Fe2O3 promoted the migration, aggregation, and isolation of uranium atoms. Uniquely generated U3O8 and Fe2O3 were easily separated and over 80% uranium and 99.5% iron could be recovered. These results demonstrate a new strategy for uranium utilization and the environmentally friendly treatment of uranium-containing wastewater.


Asunto(s)
Uranio , Contaminantes Radiactivos del Agua , Hierro , Estrés Oxidativo , Aguas Residuales , Contaminantes Radiactivos del Agua/análisis
11.
Ultrason Sonochem ; 76: 105667, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34265634

RESUMEN

Use of nanomaterials to remove uranium by adsorption from nuclear wastewater is widely applied, though not much work is focused on the recovery of uranium from the sorbents. The present work reports the recovery of adsorbed uranium from the microstructures of silica nanoparticles (SiO2M) and its functionalized biohybrid (fBHM), synthesized with Streptococcus lactis cells and SiO2M, intensified using ultrasound. Effects of temperature, concentration of leachant (nitric acid), sonic intensity, and operating frequency on the recovery as well as kinetics of recovery were thoroughly studied. A comparison with the silent operation demonstrated five and two fold increase due to the use of ultrasound under optimum conditions in the dissolution from SiO2M and fBHM respectively. Results of the subsequent adsorption studies using both the sorbents after sonochemical desorption have also been presented with an aim of checking the efficacy of reusing the adsorbent back in wastewater treatment. The SiO2M and fBHM adsorbed 69% and 67% of uranium respectively in the second cycle. The adsorption capacity of fBHM was found to reduce from 92% in the first cycle to 67% due to loss of adsorption sites in the acid treatment. Recovery and reuse of both the nuclear material and the sorbent (with some make up or activation) would ensure an effective nuclear remediation technique, catering to UN's Sustainable Development Goals.


Asunto(s)
Nanopartículas/química , Dióxido de Silicio/química , Sonicación , Uranio/química , Uranio/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Temperatura
12.
Environ Sci Pollut Res Int ; 28(40): 57073-57089, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34081279

RESUMEN

Development of efficient sorbents for selective removing and recovery of uranium from radioactive wastewaters is highly important in nuclear fuel industries from the standpoint of resource sustainability and environmental safety issues. In this study, carbon powder waste was modified by various chemical activating agents under atmosphere of nitrogen gas at 725 °C to prepare an efficient sorbent for removal and recovery of uranium ions from radioactive wastewaters of nuclear fuel conversion facility. Activation of the carbon powder with KOH, among different activators, provided maximum porosity and surface area. The activated samples were modified by reacting with ammonium persulfate in sulfuric acid solution to generate surface functional groups. The synthetized sorbents were characterized with FT-IR, XRD, BET, and SEM-EDS techniques. The effects of solution pH, contact time, initial uranium concentration, and temperature on the sorption capacity of the sorbent with respect to U(VI) from wastewater were investigated by batch method, followed by optimizing the effect of influential parameters by experimental design using central composite design. The sorption of UO22+ ions on the sorbents follows the Langmuir isotherm and pseudo-second-order kinetic models. Maximum sorption capacity for U(VI) was 192.31 mg g-1 of the modified sorbent at 35 °C. Thermodynamic data showed that sorption of U(VI) on the sorbent was through endothermic and spontaneous processes. The sorption studies on radioactive effluents of the nuclear industry demonstrated that the modified sorbent had a favorable selectivity for uranium removal in the presence of several other metal ions.


Asunto(s)
Uranio , Adsorción , Carbón Orgánico , Concentración de Iones de Hidrógeno , Cinética , Polvos , Espectroscopía Infrarroja por Transformada de Fourier , Uranio/análisis , Aguas Residuales , Circonio
13.
ACS Appl Mater Interfaces ; 13(18): 21272-21285, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33940792

RESUMEN

Although eco-friendly amidoxime-based adsorbents own an excellent uranium (U)-adsorption capacity, their U-adsorption efficiency is commonly reduced and even damaged by the biological adhesion from bacteria/microorganisms in an aqueous environment. Herein, we present an antibiofouling ultrathin poly(amidoxime) membrane (AUPM) with highly enhanced U-adsorption performance, through dispersing the quaternized chitosan (Q-CS) and poly(amidoxime) in a cross-linked sulfonated cellulose nanocrystals (S-CNC) network. The cross-linked S-CNC not only can elevate the hydrophilicity to improve the U-adsorption efficiency of AUPM but also can enhance the mechanical strength to form a self-supporting ultrathin membrane (17.21 MPa, 10 µm thickness). More importantly, this AUPM owns a good antibiofouling property, owing to the broad-spectrum antibacterial quaternary ammonium groups of the Q-CS. As a result, within the 1.00 L of low-concentration (100 ppb) U-added pure water (pH ≈ 5) and seawater (pH ≈ 8) for 48 h, 30 mg of AUPM can recover 93.7% U and 91.4% U, respectively. Furthermore, compared with the U-absorption capacity of a blank membrane without the Q-CS, that of AUPM can significantly increase 37.4% reaching from 6.39 to 8.78 mg/g after being in natural seawater for only 25 d. Additionally, this AUPM can still maintain almost constant tensile strength during 10 cycles of adsorption-desorption, which indicates the relatively long-term usability of AUPM. This AUPM will be a promising candidate for highly efficient and large-scale U-recovery from both U-containing waste freshwater/seawater and natural seawater, which will be greatly helpful to deal with the U-pollution and enrich U for the consumption of nuclear power. More importantly, the work will provide a new convenient but universal strategy to fabricate new highly enhanced low-cost U-adsorbents, through the introduction of both an antibacterial property and a high mechanical performance, which will be a good reference for the design of new highly efficient U-adsorbents.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Membranas Artificiales , Oximas/química , Polímeros/química , Agua de Mar/química , Uranio/aislamiento & purificación , Aguas Residuales/química , Adsorción , Uranio/química
14.
J Environ Manage ; 283: 112001, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33497887

RESUMEN

Developing efficient adsorbents with radiation stability for uranium removal from nuclear wastewater is greatly important for resource sustainability and environmental safety in manufacturing nuclear fuel. A novel adsorbent of hydrous titanium oxide-immobilized collagen fibers (HTO/CFs) with good radiation stability for UO22+ removal was developed. Results showed that the adsorption capacity of HTO/CFs for UO22+ was 1.379 mmol g-1 at 303 K and pH 5.0 when the initial concentration of UO22+ was 2.5 mmol L-1. Moreover, HTO/CFs showed high selectivity for U(VI) in bilateral mixed solution including UO22+ with another coexisting ion, such as Cl-, NO3-, Zn2+, and Mg2+. The adsorption behavior of UO22+ from radioactive wastewater on HTO/CF column was also investigated, and the breakthrough point was approximately 250 BV (bed volume). Notably, the HTO/CFs column can be rapidly regenerated by using only 4.0 BV of 0.1 mol L-1 HNO3 solution. The regenerated HTO/CFs column exhibited slight change in the breakthrough curve, suggesting its excellent reapplication ability. Furthermore, after irradiation under 60Co γ-ray at total doses of 10-350 kGy, HTO/CFs still preserved fibrous morphology and adsorption capacity, indicating significant radiation stability. These results demonstrate that HTO/CFs are industrial scalable adsorbents for the adsorptive recovery of uranium.


Asunto(s)
Uranio , Adsorción , Colágeno , Titanio , Aguas Residuales
15.
Small ; 17(6): e2006882, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33470524

RESUMEN

The inherent features of covalent organic frameworks (COFs) make them highly attractive for uranium recovery applications. A key aspect yet to be explored is how to improve the selectivity and efficiency of COFs for recovering uranium from seawater. To achieve this goal, a series of robust and hydrophilic benzoxazole-based COFs is developed (denoted as Tp-DBD, Bd-DBD, and Hb-DBD) as efficient adsorbents for photo-enhanced targeted uranium recovery. Benefiting from the hydroxyl groups and the formation of benzoxazole rings, the hydrophilic Tp-DBD shows outstanding stability and chemical reduction properties. Meanwhile, the synergistic effect of the hydroxyl groups and the benzoxazole rings in the π-conjugated frameworks significantly decrease the optical band gap, and improve the affinity and capacity to uranium recovery. In seawater, the adsorption capacity of uranium is 19.2× that of vanadium, a main interfering metal in uranium extraction.

16.
Adv Sci (Weinh) ; 8(2): 2001573, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33510996

RESUMEN

Preorganization is a basic design principle used by nature that allows for synergistic pathways to be expressed. Herein, a full account of the conceptual and experimental development from randomly distributed functionalities to a convergent arrangement that facilitates cooperative binding is given, thus conferring exceptional affinity toward the analyte of interest. The resulting material with chelating groups populated adjacently in a spatially locked manner displays up to two orders of magnitude improvement compared to a random and isolated manner using uranium sequestration as a model application. This adsorbent shows exceptional extraction efficiencies, capable of reducing the uranium concentration from 5 ppm to less than 1 ppb within 10 min, even though the system is permeated with high concentrations of competing ions. The efficiency is further supported by its ability to extract uranium from seawater with an uptake capability of 5.01 mg g-1, placing it among the highest-capacity seawater uranium extraction materials described to date. The concept presented here uncovers a new paradigm in the design of efficient sorbent materials by manipulating the spatial distribution to amplify the cooperation of functions.

17.
Appl Radiat Isot ; 158: 109067, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32174380

RESUMEN

An innovative seawater uranium adsorbent was prepared from the low-cost and commercially-available polyacrylonitrile (PAN) fibers. The optimum condition to synthesize the adsorbent was to irradiate the PAN fibers with 100 kGy gamma ray, amidoximate in 3 (w/v)% hydroxylamine hydrochloride solution for 75 min at 75 °C, yielding the PAN nitrile group conversion of approximately 60%. At 100 kGy, the degree of crystallinity of the irradiated fibers was also highest at 79.1%. The performances of the adsorbent in seawater samples were excellent. By submersion in the seawater sample spiked with 250 ppb of uranium for 4 weeks, the prepared fibers exhibited the adsorption capacity of 32.28 mg/g adsorbent. By submersion in seawater samples spiked with 76.5 ppm of uranium for 1 week and 945 ppm of uranium for up to 4 weeks, the fibers exhibited the adsorption capacities of 111.25 and 200.07 mg/g adsorbent, respectively. The adsorbent showed a uranium adsorption capacity of 0.11 mg/g adsorbent for 8 weeks of soaking in brine concentrate from a seawater reverse osmosis plant. The kinetics of seawater absorption by the adsorbent was quite rapid, reaching the equilibrium swelling ratio of approximately 300% in 5 min or less. Another important finding was that the prepared PAN fibers exhibit the characteristics of a superabsorbent material (equilibrium swelling ratio in DI water of 5,550%). The low cost and the ease of preparation of the fibers offer a novel environmental remediation process to adsorb uranium ions released into seawater following a nuclear accident.

18.
ACS Appl Mater Interfaces ; 12(14): 16959-16968, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32182424

RESUMEN

The recovery of uranium from seawater is of great concern because of the growing demand for nuclear energy. Though amidoxime-functionalized adsorbents as the most promising adsorbents have been widely used for this purpose, their low selectivity and vulnerability to biofouling have limited their application in real marine environments. Herein, a new bifunctional phosphorylcholine-modified adsorbent (PVC-PC) is disclosed. The PVC-PC fiber is found to be suitable for use in the pH range of seawater and metals that commonly coexist with uranium, such as alkali and alkaline earth metals, transition metals, and lanthanide metals, have no obvious effect on its uranium adsorption capacity. PVC-PC shows better selectivity and adsorption capacity than the commonly used amidoxime-functionalized adsorbent. Furthermore, PVC-PC fiber exhibits excellent antibacterial properties which could reduce the effects of biofouling caused by marine microorganisms. Because of its good selectivity and antibacterial property, phosphorylcholine-based material shows great potential as a new generation adsorbent for uranium recovery from seawater.


Asunto(s)
Antibacterianos/farmacología , Incrustaciones Biológicas , Fosforilcolina/farmacología , Uranio/farmacología , Adsorción , Antibacterianos/química , Humanos , Cinética , Fosforilcolina/química , Agua de Mar/química , Uranio/química
19.
Adv Sci (Weinh) ; 6(18): 1900961, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31559134

RESUMEN

Highly-efficient recovery of uranium from seawater is of great concern in the growing demand for nuclear energy. Bacteria are thought to be potential alternatives for uranium recovery. Herein, a Bacillus velezensis strain, UUS-1, with highly-efficient uranium immobilization capacity is isolated and is used in the recovery of uranium from seawater. The strain exhibits time-dependent uranium recovery capacity and only immobilizes uranium after growing for 12 h. The carboxyl group together with the amino group inside the bacterial cells, but not previously identified phosphate group, are essential for uranium immobilization. UUS-1 shows broad-spectrum antimicrobial activity by producing diverse antimicrobial metabolites, which endows the strain with innate resistance to the biofouling of marine microorganisms. Based on the dry weight of the initially used bacterial cultures, UUS-1 concentrates uranium by 6.26 × 105 times and reaches the high immobilization capacity of 9.46 ± 0.39 mg U g-1 bacterial cultures in real seawater within 48 h, which is the fastest uranium immobilization capacity observed from real seawater. Overall considering the ultrafast and highly-efficient uranium recovery capacity and the innate anti-biofouling activity, UUS-1 is a promising alternative for uranium recovery from seawater.

20.
Chemosphere ; 113: 22-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25065785

RESUMEN

Cultures of U(VI) reducing bacteria sourced from abandoned uranium mine tailing dam were evaluated for their ability to reduce U(VI) to U(IV). The species in the cultures reduced U(VI) in solutions with initial U(VI) concentration up to 400mgL(-)(1) under a near neutral pH of 6.5. The electron flow pathway and fate of reduced species was also analysed in the individual species in order to evaluate the potential for control and optimisation of the reduction potential at the biochemical level. The results showed that U(VI) reduction in live cells was completely blocked by the NADH-dehydrogenase inhibitor, rotenone (C23H22O6), and thioredoxin inhibitor, cadmium chloride (CdCl2), showing that U(VI) reduction involves the electron flow through NADH-dehydrogenase, a primary electron donor to the electron transport respiratory (ETR) system. Mass balance analysis of uranium species aided by visual and electron microscopy suggest that most U(VI) reduction occurred on the cell surface of the isolated species. This finding indicates the possibility of easy uranium recovery for beneficial use through biological remediation. Should the U(VI) be reduced inside the cell, recovery would require complete disruption of the cells and therefore would be difficult. The study contributes new knowledge on the underlying mechanisms in the U(VI) reduction in facultative anaerobes.


Asunto(s)
Bacterias Anaerobias/metabolismo , Uranio/metabolismo , Residuos/análisis , Cloruro de Cadmio/farmacología , Microscopía Electrónica , Minería , Oxidación-Reducción/efectos de los fármacos , Rotenona/farmacología , Especificidad de la Especie , Uranio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA