Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(37): e2400002121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39226348

RESUMEN

Single-cell RNA sequencing (scRNA-seq) data, susceptible to noise arising from biological variability and technical errors, can distort gene expression analysis and impact cell similarity assessments, particularly in heterogeneous populations. Current methods, including deep learning approaches, often struggle to accurately characterize cell relationships due to this inherent noise. To address these challenges, we introduce scAMF (Single-cell Analysis via Manifold Fitting), a framework designed to enhance clustering accuracy and data visualization in scRNA-seq studies. At the heart of scAMF lies the manifold fitting module, which effectively denoises scRNA-seq data by unfolding their distribution in the ambient space. This unfolding aligns the gene expression vector of each cell more closely with its underlying structure, bringing it spatially closer to other cells of the same cell type. To comprehensively assess the impact of scAMF, we compile a collection of 25 publicly available scRNA-seq datasets spanning various sequencing platforms, species, and organ types, forming an extensive RNA data bank. In our comparative studies, benchmarking scAMF against existing scRNA-seq analysis algorithms in this data bank, we consistently observe that scAMF outperforms in terms of clustering efficiency and data visualization clarity. Further experimental analysis reveals that this enhanced performance stems from scAMF's ability to improve the spatial distribution of the data and capture class-consistent neighborhoods. These findings underscore the promising application potential of manifold fitting as a tool in scRNA-seq analysis, signaling a significant enhancement in the precision and reliability of data interpretation in this critical field of study.


Asunto(s)
Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Análisis por Conglomerados , Humanos , Análisis de Secuencia de ARN/métodos , Animales , Algoritmos , ARN/genética , Perfilación de la Expresión Génica/métodos , RNA-Seq/métodos
2.
Cancer Med ; 13(17): e70180, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39234654

RESUMEN

BACKGROUND: Gut bacteria are related to colorectal cancer (CRC) and its clinicopathologic characteristics. OBJECTIVE: To develop gut bacterial subtypes and explore potential microbial targets for CRC. METHODS: Stool samples from 914 volunteers (376 CRCs, 363 advanced adenomas, and 175 normal controls) were included for 16S rRNA sequencing. Unsupervised learning was used to generate gut microbial subtypes. Gut bacterial community composition and clustering effects were plotted. Differences of gut bacterial abundance were analyzed. Then, the association of CRC-associated bacteria with subtypes and the association of gut bacteria with clinical information were assessed. The CatBoost models based on gut differential bacteria were constructed to identify the diseases including CRC and advanced adenoma (AA). RESULTS: Four gut microbial subtypes (A, B, C, D) were finally obtained via unsupervised learning. The characteristic bacteria of each subtype were Escherichia-Shigella in subtype A, Streptococcus in subtype B, Blautia in subtype C, and Bacteroides in subtype D. Clinical information (e.g., free fatty acids and total cholesterol) and CRC pathological information (e.g., tumor depth) varied among gut microbial subtypes. Bacilli, Lactobacillales, etc., were positively correlated with subtype B. Positive correlation of Blautia, Lachnospiraceae, etc., with subtype C and negative correlation of Coriobacteriia, Coriobacteriales, etc., with subtype D were found. Finally, the predictive ability of CatBoost models for CRC identification was improved based on gut microbial subtypes. CONCLUSION: Gut microbial subtypes provide characteristic gut bacteria and are expected to contribute to the diagnosis of CRC.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , ARN Ribosómico 16S , Humanos , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Masculino , Femenino , ARN Ribosómico 16S/genética , Persona de Mediana Edad , Heces/microbiología , Adenoma/microbiología , Adenoma/patología , Anciano , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Estudios de Casos y Controles
3.
Front Immunol ; 15: 1441838, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114653

RESUMEN

Background: The clinical presentation of Community-acquired pneumonia (CAP) in hospitalized patients exhibits heterogeneity. Inflammation and immune responses play significant roles in CAP development. However, research on immunophenotypes in CAP patients is limited, with few machine learning (ML) models analyzing immune indicators. Methods: A retrospective cohort study was conducted at Xinhua Hospital, affiliated with Shanghai Jiaotong University. Patients meeting predefined criteria were included and unsupervised clustering was used to identify phenotypes. Patients with distinct phenotypes were also compared in different outcomes. By machine learning methods, we comprehensively assess the disease severity of CAP patients. Results: A total of 1156 CAP patients were included in this research. In the training cohort (n=809), we identified three immune phenotypes among patients: Phenotype A (42.0%), Phenotype B (40.2%), and Phenotype C (17.8%), with Phenotype C corresponding to more severe disease. Similar results can be observed in the validation cohort. The optimal prognostic model, SuperPC, achieved the highest average C-index of 0.859. For predicting CAP severity, the random forest model was highly accurate, with C-index of 0.998 and 0.794 in training and validation cohorts, respectively. Conclusion: CAP patients can be categorized into three distinct immune phenotypes, each with prognostic relevance. Machine learning exhibits potential in predicting mortality and disease severity in CAP patients by leveraging clinical immunological data. Further external validation studies are crucial to confirm applicability.


Asunto(s)
Infecciones Comunitarias Adquiridas , Aprendizaje Automático , Fenotipo , Neumonía , Humanos , Infecciones Comunitarias Adquiridas/inmunología , Infecciones Comunitarias Adquiridas/diagnóstico , Infecciones Comunitarias Adquiridas/mortalidad , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Neumonía/inmunología , Neumonía/diagnóstico , Neumonía/mortalidad , Anciano , Medición de Riesgo , Índice de Severidad de la Enfermedad , Adulto , Inmunofenotipificación
4.
Proc Natl Acad Sci U S A ; 121(33): e2403771121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39110730

RESUMEN

Complex systems are typically characterized by intricate internal dynamics that are often hard to elucidate. Ideally, this requires methods that allow to detect and classify in an unsupervised way the microscopic dynamical events occurring in the system. However, decoupling statistically relevant fluctuations from the internal noise remains most often nontrivial. Here, we describe "Onion Clustering": a simple, iterative unsupervised clustering method that efficiently detects and classifies statistically relevant fluctuations in noisy time-series data. We demonstrate its efficiency by analyzing simulation and experimental trajectories of various systems with complex internal dynamics, ranging from the atomic- to the microscopic-scale, in- and out-of-equilibrium. The method is based on an iterative detect-classify-archive approach. In a similar way as peeling the external (evident) layer of an onion reveals the internal hidden ones, the method performs a first detection/classification of the most populated dynamical environment in the system and of its characteristic noise. The signal of such dynamical cluster is then removed from the time-series data and the remaining part, cleared-out from its noise, is analyzed again. At every iteration, the detection of hidden dynamical subdomains is facilitated by an increasing (and adaptive) relevance-to-noise ratio. The process iterates until no new dynamical domains can be uncovered, revealing, as an output, the number of clusters that can be effectively distinguished/classified in a statistically robust way as a function of the time-resolution of the analysis. Onion Clustering is general and benefits from clear-cut physical interpretability. We expect that it will help analyzing a variety of complex dynamical systems and time-series data.

5.
J Cheminform ; 16(1): 101, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152469

RESUMEN

With the increased availability of chemical data in public databases, innovative techniques and algorithms have emerged for the analysis, exploration, visualization, and extraction of information from these data. One such technique is chemical grouping, where chemicals with common characteristics are categorized into distinct groups based on physicochemical properties, use, biological activity, or a combination. However, existing tools for chemical grouping often require specialized programming skills or the use of commercial software packages. To address these challenges, we developed a user-friendly chemical grouping workflow implemented in KNIME, a free, open-source, low/no-code, data analytics platform. The workflow serves as an all-encompassing tool, expertly incorporating a range of processes such as molecular descriptor calculation, feature selection, dimensionality reduction, hyperparameter search, and supervised and unsupervised machine learning methods, enabling effective chemical grouping and visualization of results. Furthermore, we implemented tools for interpretation, identifying key molecular descriptors for the chemical groups, and using natural language summaries to clarify the rationale behind these groupings. The workflow was designed to run seamlessly in both the KNIME local desktop version and KNIME Server WebPortal as a web application. It incorporates interactive interfaces and guides to assist users in a step-by-step manner. We demonstrate the utility of this workflow through a case study using an eye irritation and corrosion dataset.Scientific contributionsThis work presents a novel, comprehensive chemical grouping workflow in KNIME, enhancing accessibility by integrating a user-friendly graphical interface that eliminates the need for extensive programming skills. This workflow uniquely combines several features such as automated molecular descriptor calculation, feature selection, dimensionality reduction, and machine learning algorithms (both supervised and unsupervised), with hyperparameter optimization to refine chemical grouping accuracy. Moreover, we have introduced an innovative interpretative step and natural language summaries to elucidate the underlying reasons for chemical groupings, significantly advancing the usability of the tool and interpretability of the results.

6.
Methods Mol Biol ; 2812: 143-154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39068360

RESUMEN

Single-cell RNA-sequencing (scRNA-seq) is a powerful technology that allows researchers to study gene expression heterogeneity within a tissue or cell population. One of the major advantages of scRNA-seq is that it allows researchers to identify and characterize novel cell types or subpopulations within a tissue that may be missed by traditional bulk RNA-sequencing methods. Although many existing methods have been developed to recognize known cell types, inferring novel cells may still be challenging in routine scRNA-seq analysis. Here we describe three lines of methods for inferring novel cells: unsupervised and outlier-detection-based methods, supervised and semi-supervised methods, and copy number variation (CNV)-based methods, as well as the corresponding situations that each method applies. We also provide implementation code and example usages to illustrate the available methods.


Asunto(s)
Variaciones en el Número de Copia de ADN , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , RNA-Seq/métodos , Algoritmos , Animales
7.
Nephron ; : 1-10, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38964287

RESUMEN

INTRODUCTION: Membranoproliferative glomerulonephritis is currently divided into immunoglobulin-mediated glomerulonephritis (IC-MPGN) and C3 glomerulopathy (C3G); however, the patients often overlap with histology, complement, clinical and prognostic factors. Our aim was to investigate if an unsupervised clustering method finds different patient groups in 44 IC-MPGN/C3G patients using only histological and clinical data available in everyday clinical work. METHODS: Primary IC-MPGN/C3G adult patients were included whose diagnostic (baseline) native biopsy was obtained in 2006-2017. The biopsies were reassessed and the clinical data at baseline and during follow-up were obtained from the medical records. There were 39 baseline histological and clinical variables included in the unsupervised clustering. Follow-up information was combined with the clustering results. RESULTS: The clustering resulted in two clusters (n = 24 and n = 20 patients for clusters 1-2, respectively), where cluster 1 had a significantly higher baseline plasma creatinine (mean 213 vs. 104, respectively, p value <0.001) and a lower baseline eGFR than cluster 2 (mean 37 vs. 70, respectively, p value <0.001). Regarding histology, chronic changes such as lobulated glomeruli, mesangial matrix expansion, and glomeruli double contours were more prevalent in cluster 1 (p value <0.001). Biopsy morphology was more often crescentic and membranoproliferative in cluster 1 (p value <0.001). Although the differences were insignificant, cluster 1 patients were in dialysis in the last follow-up or had a progressive disease more often than cluster 2 patients (21% vs. 5%, 38% vs. 10%). CONCLUSIONS: Our results indicate that these patients share greater similarity than the current classification IC-MPGN versus C3G indicates.

8.
Front Immunol ; 15: 1391848, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983856

RESUMEN

Background: For Rheumatoid Arthritis (RA), a long-term chronic illness, it is essential to identify and describe patient subtypes with comparable goal status and molecular biomarkers. This study aims to develop and validate a new subtyping scheme that integrates genome-scale transcriptomic profiles of RA peripheral blood genes, providing a fresh perspective for stratified treatments. Methods: We utilized independent microarray datasets of RA peripheral blood mononuclear cells (PBMCs). Up-regulated differentially expressed genes (DEGs) were subjected to functional enrichment analysis. Unsupervised cluster analysis was then employed to identify RA peripheral blood gene expression-driven subtypes. We defined three distinct clustering subtypes based on the identified 404 up-regulated DEGs. Results: Subtype A, named NE-driving, was enriched in pathways related to neutrophil activation and responses to bacteria. Subtype B, termed interferon-driving (IFN-driving), exhibited abundant B cells and showed increased expression of transcripts involved in IFN signaling and defense responses to viruses. In Subtype C, an enrichment of CD8+ T-cells was found, ultimately defining it as CD8+ T-cells-driving. The RA subtyping scheme was validated using the XGBoost machine learning algorithm. We also evaluated the therapeutic outcomes of biological disease-modifying anti-rheumatic drugs. Conclusions: The findings provide valuable insights for deep stratification, enabling the design of molecular diagnosis and serving as a reference for stratified therapy in RA patients in the future.


Asunto(s)
Artritis Reumatoide , Perfilación de la Expresión Génica , Transcriptoma , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/diagnóstico , Humanos , Antirreumáticos/uso terapéutico , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Biomarcadores , Linfocitos T CD8-positivos/inmunología
9.
Ecol Evol ; 14(7): e11569, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39045499

RESUMEN

Classifications of forest vegetation types and characterization of related species assemblages are important analytical tools for mapping and diversity monitoring of forest communities. The discrimination of forest communities is often based on ß-diversity, which can be quantified via numerous indices to derive compositional dissimilarity between samples. This study aims to evaluate the applicability of unsupervised classification for National Forest Inventory data from Georgia by comparing two cluster hierarchies. We calculated the mean basal area per hectare for each woody species across 1059 plot observations and quantified interspecies distances for all 87 species. Following an unspuervised cluster analysis, we compared the results derived from the species-neutral dissimilarity (Bray-Curtis) with those based on the Discriminating Avalanche dissimilarity, which incorporates interspecies phylogenetic variation. Incorporating genetic variation in the dissimilarity quantification resulted in a more nuanced discrimination of woody species assemblages and increased cluster coherence. Favorable statistics include the total number of clusters (23 vs. 20), mean distance within clusters (0.773 vs. 0.343), and within sum of squares (344.13 vs. 112.92). Clusters derived from dissimilarities that account for genetic variation showed a more robust alignment with biogeographical units, such as elevation and known habitats. We demonstrate that the applicability of unsupervised classification of species assemblages to large-scale forest inventory data strongly depends on the underlying quantification of dissimilarity. Our results indicate that by incorporating phylogenetic variation, a more precise classification aligned with biogeographic units is attained. This supports the concept that the genetic signal of species assemblages reflects biogeographical patterns and facilitates more precise analyses for mapping, monitoring, and management of forest diversity.

10.
Front Immunol ; 15: 1396221, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39026683

RESUMEN

Background: Accumulating evidence reveals mitochondrial dysfunction exacerbates intestinal barrier dysfunction and inflammation. Despite the growing knowledge of mitochondrial dysfunction and ulcerative colitis (UC), the mechanism of mitochondrial dysfunction in UC remains to be fully explored. Methods: We integrated 1137 UC colon mucosal samples from 12 multicenter cohorts worldwide to create a normalized compendium. Differentially expressed mitochondria-related genes (DE-MiRGs) in individuals with UC were identified using the "Limma" R package. Unsupervised consensus clustering was utilized to determine the intrinsic subtypes of UC driven by DE-MiRGs. Weighted gene co-expression network analysis was employed to investigate module genes related to UC. Four machine learning algorithms were utilized for screening DE-MiRGs in UC and construct MiRGs diagnostic models. The models were developed utilizing the over-sampled training cohort, followed by validation in both the internal test cohort and the external validation cohort. Immune cell infiltration was assessed using the Xcell and CIBERSORT algorithms, while potential biological mechanisms were explored through GSVA and GSEA algorithms. Hub genes were selected using the PPI network. Results: The study identified 108 DE-MiRGs in the colonic mucosa of patients with UC compared to healthy controls, showing significant enrichment in pathways associated with mitochondrial metabolism and inflammation. The MiRGs diagnostic models for UC were constructed based on 17 signature genes identified through various machine learning algorithms, demonstrated excellent predictive capabilities. Utilizing the identified DE-MiRGs from the normalized compendium, 941 patients with UC were stratified into three subtypes characterized by distinct cellular and molecular profiles. Specifically, the metabolic subtype demonstrated enrichment in epithelial cells, the immune-inflamed subtype displayed high enrichment in antigen-presenting cells and pathways related to pro-inflammatory activation, and the transitional subtype exhibited moderate activation across all signaling pathways. Importantly, the immune-inflamed subtype exhibited a stronger correlation with superior response to four biologics: infliximab, ustekinumab, vedolizumab, and golimumab compared to the metabolic subtype. Conclusion: This analysis unveils the interplay between mitochondrial dysfunction and the immune microenvironment in UC, thereby offering novel perspectives on the potential pathogenesis of UC and precision treatment of UC patients, and identifying new therapeutic targets.


Asunto(s)
Colitis Ulcerosa , Mitocondrias , Humanos , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/terapia , Colitis Ulcerosa/genética , Colitis Ulcerosa/diagnóstico , Mitocondrias/metabolismo , Mitocondrias/inmunología , Medicina de Precisión , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Redes Reguladoras de Genes , Perfilación de la Expresión Génica , Aprendizaje Automático , Masculino
11.
J R Stat Soc Ser C Appl Stat ; 73(3): 658-681, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39072300

RESUMEN

We consider unsupervised classification by means of a latent multinomial variable which categorizes a scalar response into one of the L components of a mixture model which incorporates scalar and functional covariates. This process can be thought as a hierarchical model with the first level modelling a scalar response according to a mixture of parametric distributions and the second level modelling the mixture probabilities by means of a generalized linear model with functional and scalar covariates. The traditional approach of treating functional covariates as vectors not only suffers from the curse of dimensionality, since functional covariates can be measured at very small intervals leading to a highly parametrized model, but also does not take into account the nature of the data. We use basis expansions to reduce the dimensionality and a Bayesian approach for estimating the parameters while providing predictions of the latent classification vector. The method is motivated by two data examples that are not easily handled by existing methods. The first example concerns identifying placebo responders on a clinical trial (normal mixture model) and the other predicting illness for milking cows (zero-inflated mixture of the Poisson model).

12.
Heliyon ; 10(13): e33616, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39050460

RESUMEN

Colorectal cancer (CRC) is a prevalent and aggressive malignancy characterized by a complex tumor microenvironment (TME). Given the variations in the level of adipocyte infiltration in TME, the prognosis may differ among CRC patients. Thus, there is an urgent need to establish a reliable method for identifying adipocyte subtypes in CRC in order to elucidate the impact of adipocyte infiltration on CRC treatment and prognosis. Herein, 144 adipocyte-infiltration-related genes (AIRGs) were identified as predictive markers for the immune-associated features and prognosis of CRC patients. Based on the 144 genes, the unsupervised clustering algorithm identified two distinct clusters of CRC patients with variations in molecular and signaling pathways, clinicopathological characteristics and responses to CRC chemotherapy and immunotherapy. Furthermore, an AIRG prognostic signature was constructed and validated in independent datasets. Overall, this study developed a prognostic signature based on AIRGs in CRC, which may contribute to the development of personalized treatment strategies and enhance prognostic prediction for CRC patients.

13.
Sensors (Basel) ; 24(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39001059

RESUMEN

This paper presents an innovative technique, Advanced Predictor of Electrical Parameters, based on machine learning methods to predict the degradation of electronic components under the effects of radiation. The term degradation refers to the way in which electrical parameters of the electronic components vary with the irradiation dose. This method consists of two sequential steps defined as 'recognition of degradation patterns in the database' and 'degradation prediction of new samples without any kind of irradiation'. The technique can be used under two different approaches called 'pure data driven' and 'model based'. In this paper, the use of Advanced Predictor of Electrical Parameters is shown for bipolar transistors, but the methodology is sufficiently general to be applied to any other component.

14.
Accid Anal Prev ; 205: 107681, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38897142

RESUMEN

Lane change behavior disrupts traffic flow and increases the potential for traffic conflicts, especially on expressway weaving segments. Focusing on the diversion process, this study incorporating individual driving patterns into conflict prediction and causation analysis can help develop individualized intervention measures to avoid risky diversion behaviors. First, to minimize measurement errors, this study introduces a lane line reconstruction method. Second, several unsupervised clustering methods, including k-means, agglomerative clustering, gaussian mixture, and spectral clustering, are applied to explore diversion patterns. Moreover, machine learning methods, including Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), Attention-based LSTM, eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), and Multilayer Perceptron (MLP), are employed for real-time traffic conflict prediction. Finally, mixed logit models are developed using pre-conflict condition data to investigate the causal mechanisms of traffic conflicts. The results indicate that the K-means algorithm with four clusters exhibits the highest Calinski-Harabasz and Silhouette scores and the lowest Davies-Bouldin scores. With superior classification accuracy and generalization ability, the LSTM is used to develop the personalized traffic conflict prediction model. Sensitivity analysis indicates that incorporating the diversion patterns into the LSTM model results in an improvement of 3.64% in Accuracy, 7.15% in Precision, and 1.34% in Recall. Results from the four mixed logit models indicate significant differences in factors contributing to traffic conflicts within each diversion pattern. For instance, increasing the speed difference between the target vehicle and the right preceding vehicle benefits traffic conflict during acceleration diversions but decreases the likelihood of traffic conflicts during deceleration diversions. These results can help traffic engineers propose individualized solutions to reduce unsafe diversion behavior.


Asunto(s)
Conducción de Automóvil , Humanos , Redes Neurales de la Computación , Aprendizaje Automático , Análisis por Conglomerados , Algoritmos , Planificación Ambiental , Máquina de Vectores de Soporte , Accidentes de Tránsito/prevención & control , Modelos Logísticos
15.
Heliyon ; 10(11): e31816, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38841440

RESUMEN

Objective: This study aimed to delineate the clear cell renal cell carcinoma (ccRCC) intrinsic subtypes through unsupervised clustering of radiomics and transcriptomics data and to evaluate their associations with clinicopathological features, prognosis, and molecular characteristics. Methods: Using a retrospective dual-center approach, we gathered transcriptomic and clinical data from ccRCC patients registered in The Cancer Genome Atlas and contrast-enhanced computed tomography images from The Cancer Imaging Archive and local databases. Following the segmentation of images, radiomics feature extraction, and feature preprocessing, we performed unsupervised clustering based on the "CancerSubtypes" package to identify distinct radiotranscriptomic subtypes, which were then correlated with clinical-pathological, prognostic, immune, and molecular characteristics. Results: Clustering identified three subtypes, C1, C2, and C3, each of which displayed unique clinicopathological, prognostic, immune, and molecular distinctions. Notably, subtypes C1 and C3 were associated with poorer survival outcomes than subtype C2. Pathway analysis highlighted immune pathway activation in C1 and metabolic pathway prominence in C2. Gene mutation analysis identified VHL and PBRM1 as the most commonly mutated genes, with more mutated genes observed in the C3 subtype. Despite similar tumor mutation burdens, microsatellite instability, and RNA interference across subtypes, C1 and C3 demonstrated greater tumor immune dysfunction and rejection. In the validation cohort, the various subtypes showed comparable results in terms of clinicopathological features and prognosis to those observed in the training cohort, thus confirming the efficacy of our algorithm. Conclusion: Unsupervised clustering based on radiotranscriptomics can identify the intrinsic subtypes of ccRCC, and radiotranscriptomic subtypes can characterize the prognosis and molecular features of tumors, enabling noninvasive tumor risk stratification.

16.
Arab J Gastroenterol ; 25(2): 150-159, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38719664

RESUMEN

BACKGROUND AND STUDY AIMS: The prognosis of colorectal cancer (CRC) is related to natural killer (NK) cells, but the molecular subtype features of CRC based on NK cells are still unknown. This study aimed to identify NK cell-related molecular subtypes of CRC and analyze the survival status and immune landscape of patients with different subtypes. PATIENTS/MATERIAL AND METHODS: mRNA expression data, single nucleotide variant (SNV) data, and clinical information of CRC patients were obtained from The Cancer Genome Atlas. Differentially expressed genes (DEGs) were obtained through differential analysis, and the intersection was taken with NK cell-associated genes to obtain 103 NK cell-associated CRC DEGs (NCDEGs). Based on NCDEGs, CRC samples were divided into three clusters through unsupervised clustering analysis. Survival analysis, immune analysis, Gene Set Enrichment Analysis (GSEA), and tumor mutation burden (TMB) analysis were performed. Finally, NCDEG-related small-molecule drugs were screened using the CMap database. RESULTS: Survival analysis revealed that cluster2 had a lower survival rate than cluster1 and cluster3 (p < 0.05). Immune infiltration analysis found that the immune infiltration levels and immune checkpoint expression levels of cluster1_3 were substantially higher than those of cluster2, and the tumor purity was the opposite (p < 0.05). GSEA presented that cluster1_3 was significantly enriched in the chemokine signaling pathway, ECM receptor interaction, and antigen processing and presentation pathways (p < 0.05). The TMB of cluster1_3 was significantly higher than that of cluster2 (p < 0.05). Genes with the highest mutation rate in CRC were APC, TP53, TTN, and KRAS. Drug prediction results showed that small-molecule drugs that reverse the upregulation of NCDEGs, deoxycholic acid, dipivefrine, phenformin, and other drugs may improve the prognosis of CRC. CONCLUSION: NK cell-associated CRC subtypes can be used to evaluate the tumor characteristics of CRC patients and provide an important reference for CRC patients.


Asunto(s)
Neoplasias Colorrectales , Células Asesinas Naturales , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Células Asesinas Naturales/inmunología , Pronóstico , Mutación , Tasa de Supervivencia , Análisis de Supervivencia , Regulación Neoplásica de la Expresión Génica , Femenino , Masculino , Perfilación de la Expresión Génica/métodos
17.
Comput Biol Med ; 175: 108549, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704901

RESUMEN

In this paper, we propose a multi-task learning (MTL) network based on the label-level fusion of metadata and hand-crafted features by unsupervised clustering to generate new clustering labels as an optimization goal. We propose a MTL module (MTLM) that incorporates an attention mechanism to enable the model to learn more integrated, variable information. We propose a dynamic strategy to adjust the loss weights of different tasks, and trade off the contributions of multiple branches. Instead of feature-level fusion, we propose label-level fusion and combine the results of our proposed MTLM with the results of the image classification network to achieve better lesion prediction on multiple dermatological datasets. We verify the effectiveness of the proposed model by quantitative and qualitative measures. The MTL network using multi-modal clues and label-level fusion can yield the significant performance improvement for skin lesion classification.


Asunto(s)
Piel , Humanos , Piel/diagnóstico por imagen , Piel/patología , Interpretación de Imagen Asistida por Computador/métodos , Aprendizaje Automático , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/patología , Redes Neurales de la Computación , Algoritmos , Enfermedades de la Piel/diagnóstico por imagen
18.
PeerJ ; 12: e17320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766489

RESUMEN

Vocal complexity is central to many evolutionary hypotheses about animal communication. Yet, quantifying and comparing complexity remains a challenge, particularly when vocal types are highly graded. Male Bornean orangutans (Pongo pygmaeus wurmbii) produce complex and variable "long call" vocalizations comprising multiple sound types that vary within and among individuals. Previous studies described six distinct call (or pulse) types within these complex vocalizations, but none quantified their discreteness or the ability of human observers to reliably classify them. We studied the long calls of 13 individuals to: (1) evaluate and quantify the reliability of audio-visual classification by three well-trained observers, (2) distinguish among call types using supervised classification and unsupervised clustering, and (3) compare the performance of different feature sets. Using 46 acoustic features, we used machine learning (i.e., support vector machines, affinity propagation, and fuzzy c-means) to identify call types and assess their discreteness. We additionally used Uniform Manifold Approximation and Projection (UMAP) to visualize the separation of pulses using both extracted features and spectrogram representations. Supervised approaches showed low inter-observer reliability and poor classification accuracy, indicating that pulse types were not discrete. We propose an updated pulse classification approach that is highly reproducible across observers and exhibits strong classification accuracy using support vector machines. Although the low number of call types suggests long calls are fairly simple, the continuous gradation of sounds seems to greatly boost the complexity of this system. This work responds to calls for more quantitative research to define call types and quantify gradedness in animal vocal systems and highlights the need for a more comprehensive framework for studying vocal complexity vis-à-vis graded repertoires.


Asunto(s)
Vocalización Animal , Animales , Vocalización Animal/fisiología , Masculino , Pongo pygmaeus/fisiología , Reproducibilidad de los Resultados , Aprendizaje Automático , Acústica , Espectrografía del Sonido , Borneo
19.
Aging (Albany NY) ; 16(8): 6809-6838, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38663915

RESUMEN

Macrophages, as essential components of the tumor immune microenvironment (TIME), could promote growth and invasion in many cancers. However, the role of macrophages in tumor microenvironment (TME) and immunotherapy in PCa is largely unexplored at present. Here, we investigated the roles of macrophage-related genes in molecular stratification, prognosis, TME, and immunotherapeutic response in PCa. Public databases provided single-cell RNA sequencing (scRNA-seq) and bulk RNAseq data. Using the Seurat R package, scRNA-seq data was processed and macrophage clusters were identified automatically and manually. Using the CellChat R package, intercellular communication analysis revealed that tumor-associated macrophages (TAMs) interact with other cells in the PCa TME primarily through MIF - (CD74+CXCR4) and MIF - (CD74+CD44) ligand-receptor pairs. We constructed coexpression networks of macrophages using the WGCNA to identify macrophage-related genes. Using the R package ConsensusClusterPlus, unsupervised hierarchical clustering analysis identified two distinct macrophage-associated subtypes, which have significantly different pathway activation status, TIME, and immunotherapeutic efficacy. Next, an 8-gene macrophage-related risk signature (MRS) was established through the LASSO Cox regression analysis with 10-fold cross-validation, and the performance of the MRS was validated in eight external PCa cohorts. The high-risk group had more active immune-related functions, more infiltrating immune cells, higher HLA and immune checkpoint gene expression, higher immune scores, and lower TIDE scores. Finally, the NCF4 gene has been identified as the hub gene in MRS using the "mgeneSim" function.


Asunto(s)
Antígenos de Histocompatibilidad Clase II , Oxidorreductasas Intramoleculares , Factores Inhibidores de la Migración de Macrófagos , Neoplasias de la Próstata , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/patología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Regulación Neoplásica de la Expresión Génica , Pronóstico , Inmunoterapia , Redes Reguladoras de Genes , Antígenos de Diferenciación de Linfocitos B/genética , Antígenos de Diferenciación de Linfocitos B/metabolismo
20.
Front Cardiovasc Med ; 11: 1342255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638880

RESUMEN

Background and aims: With the advent and implementation of high-sensitivity cardiac troponin assays, differentiation of patients with distinct types of myocardial injuries, including acute thrombotic myocardial infarction (TMI), acute non-thrombotic myocardial injury (nTMi), and chronic coronary atherosclerotic disease (cCAD), is of pressing clinical importance. Thermal liquid biopsy (TLB) emerges as a valuable diagnostic tool, relying on identifying thermally induced conformational changes of biomolecules in blood plasma. While TLB has proven useful in detecting and monitoring several cancers and autoimmune diseases, its application in cardiovascular diseases remains unexplored. In this proof-of-concept study, we sought to determine and characterize TLB profiles in patients with TMI, nTMi, and cCAD at multiple acute-phase time points (T 0 h, T 2 h, T 4 h, T 24 h, T 48 h) as well as a follow-up time point (Tfu) when the patient was in a stable state. Methods: TLB profiles were collected for 115 patients (60 with TMI, 35 with nTMi, and 20 with cCAD) who underwent coronary angiography at the event presentation and had subsequent follow-up. Medical history, physical, electrocardiographic, histological, biochemical, and angiographic data were gathered through medical records, standardized patient interviews, and core laboratory measurements. Results: Distinctive signatures were noted in the median TLB profiles across the three patient types. TLB profiles for TMI and nTMi patients exhibited gradual changes from T0 to Tfu, with significant differences during the acute and quiescent phases. During the quiescent phase, all three patient types demonstrated similar TLB signatures. An unsupervised clustering analysis revealed a unique TLB signature for the patients with TMI. TLB metrics generated from specific features of TLB profiles were tested for differences between patient groups. The first moment temperature (TFM) metric distinguished all three groups at time of presentation (T0). In addition, 13 other TLB-derived metrics were shown to have distinct distributions between patients with TMI and those with cCAD. Conclusion: Our findings demonstrated the use of TLB as a sensitive and data-rich technique to be explored in cardiovascular diseases, thus providing valuable insight into acute myocardial injury events.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA