Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 17(10)2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-29057805

RESUMEN

In this study, the modified Cramér-Rao lower bounds (MCRLBs) on the joint estimation of target position and velocity is investigated for a universal mobile telecommunication system (UMTS)-based passive multistatic radar system with antenna arrays. First, we analyze the log-likelihood redfunction of the received signal for a complex Gaussian extended target. Then, due to the non-deterministic transmitted data symbols, the analytically closed-form expressions of the MCRLBs on the Cartesian coordinates of target position and velocity are derived for a multistatic radar system with N t UMTS-based transmit station of L t antenna elements and N r receive stations of L r antenna elements. With the aid of numerical simulations, it is shown that increasing the number of receiving elements in each receive station can reduce the estimation errors. In addition, it is demonstrated that the MCRLB is not only a function of signal-to-noise ratio (SNR), the number of receiving antenna elements and the properties of the transmitted UMTS signals, but also a function of the relative geometric configuration between the target and the multistatic radar system.The analytical expressions for MCRLB will open up a new dimension for passive multistatic radar system by aiding the optimal placement of receive stations to improve the target parameter estimation performance.

2.
Prog Biophys Mol Biol ; 113(2): 254-63, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23872299

RESUMEN

Personal radio frequency electromagnetic field (RF-EMF) exposure, or exposimetry, is gaining importance in the bioelectromagnetics community but only limited data on personal exposure is available in indoor areas, namely schools, crèches, homes, and offices. Most studies are focused on adult exposure, whereas indoor microenvironments, where children are exposed, are usually not considered. A method to assess spatial and temporal indoor exposure of children and adults is proposed without involving the subjects themselves. Moreover, maximal possible daily exposure is estimated by combining instantaneous spatial and temporal exposure. In Belgium and Greece, the exposure is measured at 153 positions spread over 55 indoor microenvironments with spectral equipment. In addition, personal exposimeters (measuring EMFs of people during their daily activities) captured the temporal exposure variations during several days up to one week at 98 positions. The data were analyzed using the robust regression on order statistics (ROS) method to account for data below the detection limit. All instantaneous and maximal exposures satisfied international exposure limits and were of the same order of magnitude in Greece and Belgium. Mobile telecommunications and radio broadcasting (FM) were most present. In Belgium, digital cordless phone (DECT) exposure was present for at least 75% in the indoor microenvironments except for schools. Temporal variations of the exposure were mainly due to variations of mobile telecommunication signals. The exposure was higher during daytime than at night due to the increased voice and data traffic on the networks. Total exposure varied the most in Belgian crèches (39.3%) and Greek homes (58.2%).


Asunto(s)
Carga Corporal (Radioterapia) , Ecosistema , Campos Electromagnéticos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Vivienda/estadística & datos numéricos , Dosis de Radiación , Monitoreo de Radiación/estadística & datos numéricos , Adulto , Bélgica , Niño , Grecia , Humanos , Instituciones Académicas/estadística & datos numéricos , Análisis Espacio-Temporal , Lugar de Trabajo/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA