Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 254(Pt 3): 127892, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37952799

RESUMEN

Underwater superoleophobic (UWSO) materials have garnered significant attention in separating oil/water mixtures. But, the majority of these materials are made from non-degradable and non-renewable raw materials, polluting the environment and wasting scarce resources while using them. Against this backdrop, this study aimed to fabricate an environmental-friendly UWSO textile using biobased materials. To achieve this, hydrogel consisting of chitosan (CS) and poly(tannic acid) (PTA) were formed and coated on cotton fabric (CTF) via dip-coating followed by oxidative polymerization. CS&PTA hydrogel endowed the CTF with a rough surface and high surface energy, leading to an UWSO CTF with an underwater oil contact angle as high as 166.84°. The CS&PTA/CTF had excellent separation capability toward various oil/water mixtures, showing separation efficiency above 99.84 % and water flux higher than 23, 999 L m-2 h-1. Moreover, CS&PTA/CTF possessed excellent mechanical and environmental stability with underwater superoleophobicity unchanged after sandpaper friction, ultrasonication, organic solvents, NaCl (m/v, 30 %) solution, and acid/base solution immersion, due to the strong interaction between the hydrogel and cotton fabric generated by the mussel-inspired adhesion owing to the presence of PTA. The fully biobased UWSO CTF exhibits great promising to be an alternative to traditional superwetting materials for separation of oil/water mixtures.


Asunto(s)
Quitosano , Hidrogeles , Humanos , Caquexia , Textiles
2.
J Hazard Mater ; 465: 133373, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38159520

RESUMEN

The adhesion of high-viscosity oil contamination poses limitations on three-dimensional (3D) materials' practical use in treating oilfield-produced water (OPW). In this study, we developed a hybrid pDA/TiO2/SiO2 coating (PTS) on the surface of hydrophilic activated carbon (ACF1) through a combination of dopamine (DA) polymerization, ethyl orthosilicate (TEOS) hydrolysis, and the condensation of TiO2 nanoparticles (NPs) with SiO2 NPs. This coating was designed for gravity-based oil-water separation. The inherent porosity and generous pore size of ACF1-PTS conferred it an ultra-high permeation flux (pure water flux of 3.72 × 105 L∙m-2∙h-1), allowing it to effectively separate simulated oil-water mixtures and oil-water emulsions while maintaining exceptional permeation flux and oil rejection efficiency. When compared to cleaning methods involving ethanol aqueous solutions and NaClO, ultraviolet (UV) illumination cleaning proved superior, enabling oil-contaminated ACF1-PTS to exhibit remarkable flux recovery efficiency and oil-removal capabilities during cyclic separation of actual OPW. Furthermore, the ACF1-PTS material demonstrated impressive stability and durability when exposed to acidic environments (acid, alkali, and salt), robust hydraulic washout conditions, and 25-cycle tests. This study offers valuable insights and research avenues for the development of highly efficient and environmentally friendly 3D oil-water separation materials for the actual treatment of OPW.

3.
Water Res ; 243: 120333, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37454459

RESUMEN

Oily sewage has made serious impact on environment and people's life, and its treatment has become a global problem to be urgently solved. Oil-water separation has been considered to be an effective method to treat oily sewage at present. In this work, an underwater super-oleophobic/super-hydrophilic membrane with oil-water separation and self-cleaning properties was fabricated by electrochemical oxidation of sodium lignosulfonate doped polypyrrole. The membrane showed super-hydrophilicity for water-removal in air and super-hydrophilicity for oil-removal underwater in both oxidation and reduction states. The oil-water separation efficiency of the membranes for different organics exceeded 98.44%, no matter in oxidation or reduction state. Moreover, the membrane still exhibited excellent performance in terms of the oil-water separation efficiency and flux after 70 cycles, which were greater than 97.18% and 70.14 L·m-2·h-1, respectively. Simultaneously, through exploration of the mechanism, it was found that the larger anion kept intact in the membrane during the redox process, which made the stability of composition and performance. Thus, the membrane with advantageous properties, including underwater super-oleophobic/super-hydrophilicity, high oil-water separation efficiency, high circulating rate and stability, has significant potential in separation and collection of oily sewage.


Asunto(s)
Polímeros , Pirroles , Humanos , Aguas del Alcantarillado , Conductividad Eléctrica , Agua
4.
Chemosphere ; 330: 138706, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37068616

RESUMEN

The discharge of oily wastewater has increased dramatically and will bring serious environmental problems. In this work, a self-cleaning and anti-fouling g-C3N4/TiO2/PVDF composite membrane was fabricated via the layer-by-layer approach. The surface of as-prepared composite membrane displayed a superhydrophilic and underwater superoleophobic behavior under irradiation with visible light. Also, upon irradiation with visible light, the fabricated g-C3N4/TiO2/PVDF composite membrane displayed enhanced permeation flux and improved oil removal efficiency as a result of the generation of hydroxyl free radicals during the photocatalytic filtration process. Significantly, irradiation with visible light remarkably improved reusability of the composite membrane by initiating photocatalytic decomposition of deposited oil foulants, which enabled removal of over 99.75% of oils, thus reaching a nearly 100% flux recovery ratio. Furthermore, the g-C3N4/TiO2/PVDF composite membrane exhibited great anti-fouling behavior in photocatalysis-assisted filtration. The mechanistic study revealed that underwater superhydrophobicity and the generation of free hydroxyl radicals jointly contributed to membrane anti-fouling. The greatest advantages of this g-C3N4/TiO2/PVDF composite membrane are that not only does it degrades the oil pollutants, but it also makes the membrane less vulnerable to fouling.


Asunto(s)
Purificación del Agua , Filtración , Aceites , Agua
5.
J Colloid Interface Sci ; 642: 488-496, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37023520

RESUMEN

Underwater superoleophobic coatings exhibit promising prospects in the field of oil contamination resistance. However, their poor durability, stemming from the fragile structures and unstable hydrophilicity, greatly restricted their development. In this report, we proposed a novel strategy of combination water-induced phase separation and biomineralization to prepare the robust underwater superoleophobic epoxy resin-calcium alginate (EP-CA) coating by utilizing a surfactant-free emulsion of epoxy resin/sodium alginate (EP/SA). The EP-CA coating not only exhibited excellent adhesion to various substrates, but also had remarkable resistance to the physical/chemical attacks such as abrasion, acid, alkali and salt. It could also protect the substrate (e.g., PET substrate) from the damage of organic solution and the fouling of crude oil. This report provides a new perspective to fabricate robust superhydrophilic coating with a facile way.

6.
Polymers (Basel) ; 15(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36679208

RESUMEN

A novel superhydrophilic and underwater superoleophobic modified PVDF membrane for oil/water separation was fabricated through a modified blending approach. Pluronic F127 and amphiphilic copolymer P (MMA-AA) were directly blended with PVDF as a hydrophilic polymeric additive to prepare membranes via phase inversion induced by immersion precipitation. Then, the as-prepared microfiltration membranes were annealed at 160 °C for a short time and quenched to room temperature. The resultant membranes exhibited contact angles of hexane larger than 150° no matter whether in an acidic or basic environment. For 1, 2-dichloroethane droplets, the membrane surface showed a change from superoleophilic to superoleophobic under water with aqueous solutions with pH values from 2 to 13. This as-prepared membrane has good mechanical strength and can then be applied for oil and water mixture separation.

7.
J Hazard Mater ; 448: 130807, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36709734

RESUMEN

The separation and purification of complex and stable stubborn oily sewage is extremely challenging. To respond to this challenge, we developed a powerful flexible filter with ultrahigh strength, durability, flux, separation efficiency, and a multiobjective separation function based on a universal epitaxial growth process of glass fiber fabric (Gf). The underwater oil contact angle (UOCA) of the silicate@Gf (MgSi@Gf) filter is 156.3°, so it can achieve both an ultrahigh permeation flux (5632.7 L·m-2·h-1) and oil-water separation efficiency (99.5%) under gravity (≈ 1 kPa) in purifying surfactant-stabilized emulsions, actual industrial oily sewage and mechanical cold rolling emulsions. The filter with a high tensile strength (66.5 MPa) and oil invasion pressure (4626 Pa) can withstand the impact of much sewage or intense water flow. The filter can tolerate extreme conditions and can maintain high separation performance in acid or alkaline (pH 1-13), high or low temperature (100 °C, 200 °C, -18 °C) conditions or natural salty waters such as seawater. The filter can remove methylene blue (MB) dye (99.8%) by filtration, and can be repeatedly and easily reconstructed (renewable advantage). The filter shows great potential for efficiently eliminating the hazards of contaminants in actual oily sewage and thus protect human health.

8.
Biomimetics (Basel) ; 7(4)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36412705

RESUMEN

Effective integrated methods for oil-water separation and water remediation have signifi-cance in both energy and environment fields. Materials with both superlyophobic and superlyophilic properties toward water and oil have aroused great attention due to their energy-saving and high-efficient advantages in oil-water separation. However, in order to fulfill the superlyophobicity, low surface tension fluorinated components are always being introduced. These constituents are environmentally harmful, which may lead to additional contamination during the separating process. Moreover, the heavy metal ions, which are water-soluble and highly toxic, are always contained in the oil-water mixtures created during industrial production. Therefore, material that is integrated by both capacities of oil-water separation and removal of heavy metal contamination would be of significance in both industrial applications and environmental sustainability. Herein, inspired by the composition and wettability of the shrimp shell, an eco-friendly chitosan-coated (CTS) cotton was developed. The treated cotton exhibits the superhydrophilic/underwater superoleophobic property and is capable of separating both immiscible oil-water mixtures and stabilized oil-in-water emulsions. More significantly, various harmful water-soluble heavy metal ions can also be effectively removed during the separation of emulsions. The developed CTS coated cotton demonstrates an attractive perspective toward oil-water separation and wastewater treatment in various applications.

9.
Nanomaterials (Basel) ; 12(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36144908

RESUMEN

Intelligent surfaces with controlled wettability have caught much attention in industrial oily wastewater treatment. In this study, a hygro-responsive superhydrophilic/underwater superoleophobic coating was fabricated by the liquid-phase deposition of SiO2 grafted with perfluorooctanoic acid. The wettability of the surface could realize the transformation from superhydrophilicity/underwater superoleophobicity (SHI/USOB) to superhydrophobicity/superoleophilicity (SHB/SOI), both of which exhibited excellent separation performance towards different types of oil-water mixtures with the separation efficiency higher than 99%. Furthermore, the long-chain perfluoroakyl substances on the surface could be decomposed by mixing SiO2 with TiO2 nanoparticles under UV irradiation, which could reduce the pollution to human beings and environment. It is anticipated that the prepared coating with controlled wettability could provide a feasible solution for oil-water separation.

10.
ACS Appl Mater Interfaces ; 14(40): 46077-46085, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36169925

RESUMEN

Robust underwater oil-repellent materials combining high mechanical strength and durability with superwettability and low oil adhesion are needed to build oil-repellent devices able to work in water, to manipulate droplet behavior, etc. However, combining all of these properties within a single, durable material remains a challenge. Herein, we fabricate a robust underwater oil-resistant material (Al2O3) with all of the above properties by gel casting. The micro/nanoceramic particles distributed on the surface endow the material with excellent underwater superoleophobicity (∼160°) and low oil adhesion (<4 µN). In addition, the substrate exhibits typical ceramic characteristics such as good antiacid/alkali properties, high salt resistance, and high load tolerance. These excellent properties make the material not only applicable to various liquid environments but also resistant to the impact of particles and other physical damage. More importantly, the substrate could still exhibit underwater superoleophobicity after being worn under specific conditions, as wear will create new surfaces with similar particle size distribution. This approach is easily scalable for mass production, which could open a pathway for the fabrication of practical underwater long-lasting functional interfacial materials.

11.
J Colloid Interface Sci ; 628(Pt B): 955-967, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36037717

RESUMEN

In this work, gold/bismuth oxychloride (Au/BiOCl) nanocomposites with different morphologies were successfully prepared by simple solvothermal method and sodium borohydride reduction method, which exhibited significantly efficient visible-light-driven photocatalytic disinfection for Staphylococcus aureus (S.aureus). Particularly, the flower-like Au/BiOCl nanocomposite showed the highest photocatalytic bactericidal performance among the prepared Au/BiOCl samples. The radical trapping experiments revealed that the hole was the main reactive species responsible for the inactivation of S.aureus over Au/BiOCl composite. The enhanced photocatalytic bactericidal effect could be attributed to the enhanced adsorption intensity of visible light that originated from the surface plasmon resonance (SPR) effect of Au, rapid transfer and space transport of hot electrons caused by the hierarchical structure of BiOCl layered compound. Furthermore, the Au/BiOCl coating prepared on stainless steel wire mesh via in-situ synthesis method exhibited excellent superhydrophilic/underwater superoleophobic performance, which endowed the coating with anti-oil-fouling in water. More importantly, compared with Au/BiOCl powder catalyst, the prepared Au/BiOCl coating with anti-oil-fouling also possessed high photocatalytic bactericidal activity and stable recycling performance.


Asunto(s)
Luz , Acero Inoxidable , Polvos , Oro/farmacología , Oro/química , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Agua
12.
J Colloid Interface Sci ; 616: 720-729, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35247810

RESUMEN

The crude oil spill accidents cause numerous crude oil contaminations and oily wastewater. Underwater superoleophobic coating has excellent ability to resist crude oil contamination and separate oily wastewater. But it's hard to keep stable performance against the physical or chemical attack. Herein, a robust underwater superoleophobic coating was fabricated by spraying the mixture of polyethyleneimine (PEI) and TiO2 on epoxy resin (E44) surface. Besides the good physical and chemical stability, the coating exhibited better drag reduction, anti-fouling performance and anti-corrosive performance in water compared with the commercially hydrophilic coating. The stainless steel mesh (SSM), coated by the E44/PEI/TiO2 coating, could separate different oil-water emulsions with a high oil rejection greater than 99.7%.


Asunto(s)
Petróleo , Purificación del Agua , Lubrificación , Aceites , Polietileneimina , Aguas Residuales , Agua
13.
J Colloid Interface Sci ; 608(Pt 2): 1960-1972, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34749146

RESUMEN

Due to the great fouling resistance property, (super)hydrophilic/underwater superoleophobic membranes are prevalent candidates for oil-polluted wastewater treatment. Even so, membrane fouling inevitably occurs during long-term operation. Therefore, it is of great significance to construct anti-fouling membranes with robust flux recovery. Herein, a polyvinyl pyrrolidone (PVP) coated porous potassium-doped g-C3N4 (PKCN) membrane was fabricated for the first time by vacuum filtration. The as-prepared membrane displays enhanced hydrophilicity and underwater superoleophobicity. The permeability of the membrane increased significantly after sonication treatment, which is attributed to the increased pore volume and small nanosheets size that shorten the transport pathway of water molecules. Importantly, owing to the high photo-Fenton activity, the PKCN membrane exhibits fast (within 15 min) and excellent flux recovery (96.5%) after the photo-Fenton cleaning process. Furthermore, after 10 repeated usages, the PKCN membrane still keeps stable permeability and excellent purification efficiency. This work opens a door for developing self-cleaning membranes with the superior anti-fouling ability for effective oil/water separation.


Asunto(s)
Grafito , Purificación del Agua , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos de Nitrógeno , Porosidad
14.
J Colloid Interface Sci ; 610: 970-981, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34887059

RESUMEN

HYPOTHESIS: Polyurethane plastic waste (PUPW), a port-abundant solid waste, is difficult to degrade naturally and poses a severe threat to the environment. Hence, the effective recycling of PUPW remains a challenge. EXPERIMENTS: Herein, a strategy of converting PUPW into stacked oil/water filtration layer grain through a layer-by-layer (LBL) assembly process is investigated. Notably, such PU-based, grain-stacked, and switchable wettability of the oil/water filter layer is first reported. FINDINGS: The grain-stacked filter layers are flexible for separating immiscible oil/water mixtures, water-in-oil emulsions (WOE), and oil-in-water emulsions (OWE) under gravity over 10 cycle-usages. They can withstand strong acid/alkali solutions (pH = 1-14) and salt solutions over 12 h. Besides, 100-times scale-up experiments have indicated that the obtained filter layers exhibit an upper to 98.2 % separation efficiency for 10 L real industrial oil/water emulsion in the 24 h continuous operation. The demulsification mechanism for emulsions is that the electrostatic interaction along with adsorption between emulsion droplets and grains leads to the uneven distribution of surfactants on the interface film of the emulsion droplets, increasing the probability of tiny droplets colliding and coalescing into large droplets to achieve oil/water separation. This work proposes an effective and economical method of abundant plastic waste for industrial-scale oil-water separation rather than just on the laboratory-scale.

15.
J Hazard Mater ; 404(Pt B): 124197, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33091695

RESUMEN

The efficient treatment of high stability emulsion with small diameter and the prevention of oil contamination of materials are serious issues in the process of emulsion separation. In order to address those issues, we reported a fast and versatile hydrophilic surface coating technology that uses oxidants and diamines to synergistically promote the polymerization of caffeic acid (CA). It was found that amino groups can not only accelerate the polymerization of CA, but also promote the deposition of polymers on the sponge surface. Using silica nanoparticles to improve the roughness, superhydrophilic melamine sponge could be prepared, which exhibited excellent superhydrophlic-underwater superolephobic and anti-oil-adhesion properties. DFT simulation was employed to explore the potential mechanism of the anti-oil adhesion ability. In addition, combined with the mechanical compression strategy, the sponge exhibited a high efficiency of 99.10% with a permeation flux of 19080 ±â€¯700 Lm-2 h-1 in emulsion separation just under the action of gravity. Moreover, based on the interaction between the surfactant and the surface of the material, the separation mechanism was discussed. Overall, this work provided an advanced method for the preparation of superhydrophilic sponge with anti-oil-fouling performance, which showed great potential in dealing with practically challenging emulsified wastewater.

16.
Front Chem ; 8: 768, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33134259

RESUMEN

Oil-water separation using super-wetting and the selective permeability of membranes for oil or water has great ecological and economic significance. We report on the transition of wettability response, from superhydrophilic underwater-superoleophobic to superhydrophobic-superoleophilic state, by nanostructuring stainless steel and copper meshes using ultrashort femtosecond laser pulses. Our approach is environment-friendly, chemical free, and efficient as it exploits the benefit of aging the processed samples in a high vacuum environment. We optimized the laser scanning parameters, mesh pore size, and aging conditions to produce membranes exhibiting an extraordinary separation efficiency of 98% for the oil-water mixture. A variation in the water and oil contact angles for different meshes is presented as a function of the laser scanning speed. Stainless steel meshes with 150 µm pore size and copper meshes with 100 µm pore size have demonstrated an excellent wettability response for oil and water phases. Vacuum aging causes rapid chemisorption of hydrocarbons on laser-structured surfaces in the absence of water molecules, rapidly transforming the wetting state from superhydrophilic to superhydrophobic.

17.
Front Chem ; 8: 687, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850682

RESUMEN

Underwater superoleophobic microlens array (MLA) has been emerging as a crucial device for its wide applications in ocean optical imaging and sensing, endoscopic surgery, microfluidics and optofluidics, and other biomedical applications. Fabrication of microlens arrays integrated with excellent optical performance as well as underwater superoleophobicity remains a great challenge. In this paper, we report an underwater super oil-repellent MLA on a transparent optical glass substrate via femtosecond laser-induced phase and structural modification and chemical isotropic etching. The fabricated sample simultaneously possesses microlens structures with a smooth surface to enable optical imaging function, and grid-patterned biomimetic micro/nano hierarchical surface structures to produce underwater oil-resistance with a contact angle of 160.0° and a sliding angle of 1.5°. The resultant oil-repellent MLA exhibits underwater superoleophobicity and self-cleaning abilities in water. Meanwhile, it was demonstrated to have impressive imaging capability even after oil contamination. We believe that this novel resultant anti-oil MLA will be helpful for underwater detection and bioscience research, especially in oil polluted underwater workspaces.

18.
Polymers (Basel) ; 12(6)2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32575503

RESUMEN

A novel micro/nanoscale rough structured superhydrophilic hybrid-coated mesh that shows underwater superoleophobic behavior is fabricated by spray casting or dipping nanoparticle-polymer suspensions on stainless steel mesh substrates. Water droplets can spread over the mesh completely; meanwhile, oil droplets can roll off the mesh at low tilt angles without any penetration. Besides overcoming the oil-fouling problem of many superhydrophilic coatings, this superhydrophilic and underwater superoleophobic mesh can be used to separate oil and water. The simple method used here to prepare the organic-inorganic hybrid coatings successfully produced controllable micro-nano binary roughness and also achieved a rough topography of micro-nano binary structure by controlling the content of inorganic particles. The mechanism of oil-water separation by the superhydrophilic and superoleophobic membrane is rationalized by considering capillary mechanics. Tetraethyl orathosilicate (TEOS) as a base was used to prepare the nano-SiO2 solution as a nano-dopant through a sol-gel process, while polyvinyl alcohol (PVA) was used as the film binder and glutaraldehyde as the cross-linking agent; the mixture was dip-coated on the surface of 300-mesh stainless steel mesh to form superhydrophilic and underwater superoleophobic film. Properties of nano-SiO2 represented by infrared spectroscopy and surface topography of the film observed under scanning electron microscope (SEM) indicated that the film surface had a coarse micro-nano binary structure; the effect of nano-SiO2 doping amount on the film's surface topography and the effect of such surface topography on hydrophilicity of the film were studied; contact angle of water on such surface was tested as 0° by the surface contact angle tester and spread quickly; the underwater contact angle to oil was 158°, showing superhydrophilic and underwater superoleophobic properties. The effect of the dosing amount of cross-linking agent to the waterproof swelling property and the permeate flux of the film were studied; the oil-water separation effect of the film to oil-water suspension and oil-water emulsion was studied too, and in both cases the separation efficiency reached 99%, which finally reduced the oil content to be lower than 50 mg/L. The effect of filtration times to permeate flux was studied, and it was found that the more hydrophilic the film was, the stronger the stain resistance would be, and the permeate flux would gradually decrease along with the increase of filtration times.

19.
Carbohydr Polym ; 244: 116449, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32536394

RESUMEN

Superhydrophilic and underwater superoleophobic textiles exhibit excellent oil/water separation performance but are limited by the poor stability and environmental incompatibility. Inspired by strong adhesion of marine mussels, we designed and fabricated a stable and eco-friendly superhydrophilic and underwater superoleophobic cotton fabric (CF) from all renewable resources through in-situ surface deposition of polydopamine (PDA) particles followed by adsorption of hydrophilic chitosan via dip coating at room temperature. The as-prepared superhydrophilic and underwater superoleophobic CF exhibited outstanding oil/water separation performance with separation efficiency and water flux higher than 99 % and 15,000 L m-2 h-1, respectively. Moreover, it not only showed excellent resistance to mechanical abrasion and ultrasound treatment but also had outstanding superwetting stability against acid/alkali/salt erosion. We believed that the eco-friendly superhydrophilic and underwater superoleophobic CF would exhibit great potential in oil/water separation especially under harsh conditions.


Asunto(s)
Quitosano/química , Fibra de Algodón , Indoles/química , Polímeros/química , Purificación del Agua , Emulsiones/química , Filtración , Aceites/química
20.
Environ Res ; 186: 109494, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32302872

RESUMEN

Inspired by fish scales, this study prepares a thermo-responsive underwater oleophobic PNIPAM/PAN/TiO2 nanofibrous membranes by traditional electrospinning technique using poly-N-isopropylacrylamide (PNIPAM) and polyacrylonitrile (PAN). Thermal properties, mechanical properties, surface chemical composition, wettability, photocatalysis, and oil/water separation of PNIPAM/PAN/TiO2 membrane are explored compared to pure PNIPAM membrane. Result reveals that PAN/TiO2 compounds make PNIPAM membrane with a smaller fiber diameter of 141 nm and high tensile stress of 7.4 MPa, and also decompose 98% of rhodamine B after UV light radiation. This bioinspired design structure endows the membrane with superhydrophilicity with a low water contact angle, and underwater superoleophobicity with a high oil contact angle of 157° (petroleum ether) and 151° (dichloromethane). This membrane can efficiency separate oil/water mixture with a high separation efficiency. Moreover, the resultant PNIPAM/PAN/TiO2 membrane has the bionic fish scale structure, and has wettability respond at lower critical solution temperature making the water flux decreased from 10013 ± 367 L m-2·h-1 to 7713 ± 324 L m-2·h-1, and thus has a potential to be used in purification of reclaimed water and separation of oil from water.


Asunto(s)
Nanofibras , Aceites , Resinas Acrílicas , Animales , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA