Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
J Nanobiotechnology ; 22(1): 531, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218878

RESUMEN

Ferroptosis, triggered by iron overload and excessive lipid peroxidation, plays a pivotal role in the progression of DOX-induced cardiomyopathy (DIC), and thus limits the use of doxorubicin (DOX) in clinic. Here, we further showed that cardiac ferroptosis induced by DOX in mice was attributed to up-regulation of Hmox1, as knockdown of Hmox1 effectively inhibited cardiomyocyte ferroptosis. To targeted delivery of siRNA into cardiomyocytes, siRNA-encapsulated exosomes were injected followed by ultrasound microbubble targeted destruction (UTMD) in the heart region. UTMD greatly facilitated exosome delivery into heart. Consistently, UTMD assisted exosomal delivery of siHomox1 nearly blocked the ferroptosis and the subsequent cardiotoxicity induced by doxorubicin. In summary, our findings reveal that the upregulation of HMOX1 induces ferroptosis in cardiomyocytes and UTMD-assisted exosomal delivery of siHmox1 can be used as a potential therapeutic strategy for DIC.


Asunto(s)
Doxorrubicina , Exosomas , Ferroptosis , Hemo-Oxigenasa 1 , Microburbujas , Miocitos Cardíacos , ARN Interferente Pequeño , Ferroptosis/efectos de los fármacos , Animales , Doxorrubicina/farmacología , Exosomas/metabolismo , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Hemo-Oxigenasa 1/metabolismo , ARN Interferente Pequeño/farmacología , Ratones Endogámicos C57BL , Masculino , Sistemas de Liberación de Medicamentos , Cardiomiopatías/metabolismo , Proteínas de la Membrana
2.
Mol Ther Methods Clin Dev ; 32(3): 101277, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-38983873

RESUMEN

Over the past two decades, there has been tremendous and exciting progress toward extending the use of medical ultrasound beyond a traditional imaging tool. Ultrasound contrast agents, typically used for improved visualization of blood flow, have been explored as novel non-viral gene delivery vectors for cardiovascular therapy. Given this adaptation to ultrasound contrast-enhancing agents, this presents as an image-guided and site-specific gene delivery technique with potential for multi-gene and repeatable delivery protocols-overcoming some of the limitations of alternative gene therapy approaches. In this review, we provide an overview of the studies to date that employ this technique toward cardiac gene therapy using cardiovascular disease animal models and summarize their key findings.

3.
Biochem Biophys Res Commun ; 726: 150229, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-38908346

RESUMEN

OBJECTIVE: Mesenchymal stem cells (MSCs) can treat osteoarthritis (OA), but their therapeutic efficacy is poor to date due to low migration efficiency. This study aimed to determine whether ultrasound-targeted microbubble destruction (UTMD) could ameliorate cartilage repair efficiency through facilitating the migration of MSCs via hypoxia-inducible factor-1α (HIF-1α)-mediated glycolysis regulatory pathway in OA model rats. METHODS: OA rats were treated with MSCs alone or in combination with UTMD, respectively, for 4 weeks. Cartilage histopathology, MSCs migration efficiency, von Frey fiber thresholds, and the expression levels of collagen II and MMP-13 were measured. Further, MSCs were extracted from the bone marrow of rats, cocultured with osteoarthritic chondrocytes, transfected to siRNA-HIF-1α, and subjected to UTMD for 4 days. Glucose consumption, lactate production, and cell migration efficiency were assessed. The protein expression levels of HIF-1α, HK2, PKM2, and GLUT1 were measured, respectively. RESULTS: In OA rat model, NC-MSCs + UTMD improved migration efficiency, increased collagen II expression, decreased MMP-13 expression, and delayed osteoarthritis progression. Silencing HIF-1α attenuated the effects induced by UTMD. In vitro, UTMD led to increases in MSC activity and migration, glucose consumption, lactate production, and the protein expression of HIF-1α, HK2, PKM2, and GLUT1 expression, all of which were reversed upon HIF-1α silencing. CONCLUSION: UTMD enhances MSCs migration and improves cartilage repair efficiency through the HIF-1α-mediated glycolytic regulatory pathway, providing a novel therapy strategy for knee osteoarthritis.


Asunto(s)
Movimiento Celular , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Células Madre Mesenquimatosas , Microburbujas , Osteoartritis , Ratas Sprague-Dawley , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratas , Osteoartritis/metabolismo , Osteoartritis/terapia , Osteoartritis/patología , Trasplante de Células Madre Mesenquimatosas/métodos , Masculino , Ondas Ultrasónicas , Cartílago Articular/metabolismo , Cartílago Articular/patología , Condrocitos/metabolismo , Células Cultivadas
4.
Int J Mol Med ; 53(6)2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38666537

RESUMEN

Fibroblast growth factor (FGF)21 is a peptide hormone that improves mitochondrial function and energy metabolism, and the deficiency of its co­receptor ß­klotho (KLB) causes decreased FGF21 sensitivity. The present study examined whether the cardiac delivery of plasmids containing the KLB gene via ultrasound­targeted microbubble destruction (UTMD) enhances the efficacy of FGF21 against heart failure post­acute myocardial infarction (AMI). For this purpose, the levels of FGF21 in patients and rats with heart dysfunction post­infarction were determined using ELISA. Sprague­Dawley rats received the 3X UTMD­mediated delivery of KLB@cationic microbubbles (KLB@CMBs) 1 week following the induction of AMI. Echocardiography, histopathology and biochemical analysis were performed at 4 weeks following the induction of AMI. The results revealed that patients with heart failure post­infarction had higher serum FGF21 levels than the healthy controls. However, the downstream signal, KLB, but not α­klotho, was reduced in the heart tissues of rats with AMI. As was expected, treatment with FGF21 did not substantially attenuate heart remodeling post­infarction. It was found that decreased receptors KLB in the heart may result in the insensitivity to FGF21 treatment. In vivo, the UTMD technology­mediated delivery of KLB@CMBs to the heart significantly enhanced the effects of FGF21 administration on cardiac remodeling and mitochondrial dysfunction in the rats following infarction. The delivery of KLB to the heart by UTMD and the administration of FGF21 attenuated mitochondrial impairment and oxidative stress by activating nuclear factor erythroid 2­related factor 2 signals. On the whole, the present study demonstrates that the cardiac delivery of KLB significantly optimizes the cardioprotective effects of FGF21 therapy on adverse heart remodeling. UTMD appears a promising interdisciplinary approach with which to improve heart failure post­myocardial infarction.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Proteínas Klotho , Microburbujas , Infarto del Miocardio , Ratas Sprague-Dawley , Remodelación Ventricular , Factores de Crecimiento de Fibroblastos/administración & dosificación , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Animales , Infarto del Miocardio/metabolismo , Infarto del Miocardio/terapia , Humanos , Masculino , Ratas , Remodelación Ventricular/efectos de los fármacos , Femenino , Ondas Ultrasónicas , Miocardio/metabolismo , Miocardio/patología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/terapia
5.
J Nanobiotechnology ; 22(1): 193, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643134

RESUMEN

Pyroptosis, a novel type of programmed cell death (PCD), which provides a feasible therapeutic option for the treatment of tumors. However, due to the hypermethylation of the promoter, the critical protein Gasdermin E (GSDME) is lacking in the majority of cancer cells, which cannot start the pyroptosis process and leads to dissatisfactory therapeutic effects. Additionally, the quick clearance, systemic side effects, and low concentration at the tumor site of conventional pyroptosis reagents restrict their use in clinical cancer therapy. Here, we described a combination therapy that induces tumor cell pyroptosis via the use of ultrasound-targeted microbubble destruction (UTMD) in combination with DNA demethylation. The combined application of UTMD and hydralazine-loaded nanodroplets (HYD-NDs) can lead to the rapid release of HYD (a demethylation drug), which can cause the up-regulation of GSDME expression, and produce reactive oxygen species (ROS) by UTMD to cleave up-regulated GSDME, thereby inducing pyroptosis. HYD-NDs combined with ultrasound (US) group had the strongest tumor inhibition effect, and the tumor inhibition rate was 87.15% (HYD-NDs group: 51.41 ± 3.61%, NDs + US group: 32.73%±7.72%), indicating that the strategy had a more significant synergistic anti-tumor effect. In addition, as a new drug delivery carrier, HYD-NDs have great biosafety, tumor targeting, and ultrasound imaging performance. According to the results, the combined therapy reasonably regulated the process of tumor cell pyroptosis, which offered a new strategy for optimizing the therapy of GSDME-silenced solid tumors.


Asunto(s)
Neoplasias , Piroptosis , Humanos , Piroptosis/fisiología , Microburbujas , Neoplasias/tratamiento farmacológico , Apoptosis , Hidralazina/farmacología , Hidralazina/uso terapéutico
6.
Int J Cardiol ; 404: 131943, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38458386

RESUMEN

BACKGROUND: Previous studies have demonstrated the efficacy of ultrasound-targeted microbubble destruction (UTMD) in the treatment of ischemic heart failure (HF). The purpose of this study was to explore the mechanism by which UTMD improves ischemic HF. METHODS: An ischemic heart failure model was established using Sprague-Dawley rats. Rats were randomly divided into 7 groups: sham group, HF group, HF + MB group, HF + ultrasound (US) group, HF + UTMD group, HF + UTMD+LY294002 group, and HF + LY294002 group. Serum BNP level and echocardiographic parameters were measured to evaluate cardiac function. PI3K/Akt/eNOS signaling pathway protein levels were detected by immunohistochemistry (IHC) and western blotting. The concentrations of nitrous oxide (NO) and ATP were detected by ELISA, and hematoxylin and eosin (HE) staining was used to evaluate myocardial tissue. RESULTS: UTMD rapidly improved ejection fraction (EF) (HF: 37.16 ± 1.21% vs. HF + UTMD: 46.31 ± 3.00%, P < 0.01) and fractional shortening (FS) (HF: 18.53 ± 0.58% vs. HF + UTMD: 24.05 ± 1.84%, P < 0.01) in rats with ischemic HF. UTMD activated the PI3K/AKT/eNOS signaling pathway (HF vs. HF + UTMD, P < 0.01) and promoted the release of NO and ATP (HF vs. HF + UTMD, both, P < 0.05). Inhibition of the PI3K/AKT/eNOS signaling pathway by LY294002 worsened EF (HF: 37.16 ± 1.21% vs. HF + LY294002: 32.73 ± 3.05%, P < 0.05), and the release of NO and ATP by UTMD (HF + UTMD vs. HF + UTMD+LY294002, P < 0.05). CONCLUSIONS: UTMD can rapidly improve cardiac function in ischemic HF by activating the PI3K/Akt/eNOS signaling pathway and promoting the release of NO and ATP.


Asunto(s)
Insuficiencia Cardíaca , Proteínas Proto-Oncogénicas c-akt , Ratas , Animales , Ratas Sprague-Dawley , Proteínas Proto-Oncogénicas c-akt/metabolismo , Función Ventricular Izquierda , Microburbujas , Fosfatidilinositol 3-Quinasas , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/tratamiento farmacológico , Adenosina Trifosfato
7.
J Control Release ; 367: 45-60, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246204

RESUMEN

PD-1/PD-L1-based immune checkpoint blockade therapy has shown limited benefits in tumor patients, partially attributed to the inadequate infiltration of immune effector cells within tumors. Here, we established a nanoplatform named DPPA/IL-15 NPs to target PD-L1 for the tumor delivery of IL-15 messenger RNA (mRNA). DPPA/IL-15 NPs were endowed with ultrasound responsiveness and contrast-enhanced ultrasound (CEUS) imaging performance. They effectively protected IL-15 mRNA from degradation and specifically transfected it into tumor cells through the utilization of ultrasound-targeted microbubble destruction (UTMD). This resulted in the activation of IL-15-related immune effector cells while blocking the PD-1/PD-L1 pathway. In addition, UTMD could generate reactive oxygen species (ROS) that induce endoplasmic reticulum (ER) stress-driven immunogenic cell death (ICD), initiating anti-tumor immunity. In vitro and in vivo studies revealed that this combination therapy could induce a robust systemic immune response and enhance anti-tumor efficacy. Thus, this combination therapy has the potential for clinical translation through enhanced immunotherapy and provides real-time ultrasound imaging guidance.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Microburbujas , Receptor de Muerte Celular Programada 1/metabolismo , Interleucina-15/genética , Neoplasias/terapia , Inmunoterapia/métodos , Microambiente Tumoral , Línea Celular Tumoral
8.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1021238

RESUMEN

BACKGROUND:Immunotherapy enhances the anti-cancer immune response in many ways,so combined immunotherapy is a better choice.Ultrasound-targeted microbubble destruction technique delivers drugs,genes,antibodies and cytokines directly to the cytoplasm of immune cells and enhances the immune response.However,the application of ultrasound-targeted microbubble destruction technique in the treatment of ovarian cancer with both CXC chemokine receptor 4 antibody and programmed death-ligand 1 antibody has not been reported. OBJECTIVE:To investigate the effect of ultrasound irradiation on the proliferation and migration of ovarian cancer cells with CXC chemokine receptor 4 antibody and programmed death-ligand 1 antibody double targeted nanobubbles. METHODS:IOSE-80 normal ovarian epithelial cells,SKOV3 and CAOV3 ovarian cancer cells were cultured and expanded.Double labeling fluorescence immunoassay was used to co-locate CXC chemokine receptor 4 and programmed death-ligand 1 protein.Western blot assay was used to detect the relative expression of CXC chemokine receptor 4 and programmed death-ligand 1 protein in three kinds of cells and screen out the experimental cells,i.e.,pure nanobubbles,nanobubbles carrying CXC chemokine receptor 4 antibody,nanobubbles carrying CXC chemokine receptor 4 and programmed death-ligand 1 antibody.SKOV3 ovarian cancer cells in the logarithmic growth phase were taken and divided into six groups for treatment.Group A was added with McCoy's 5A medium.Group B was added with McCoy's 5A medium containing stromal cell-derived factor-1.Group C was added with pure nanobubble solution and McCoy's 5A medium containing stromal cell-derived factor-1.Group D was added with nanobubble solution containing CXC chemokine receptor 4 antibody and McCoy's 5A medium containing stromal cell-derived factor-1.Group E was added with nanobubble solution containing CXC chemokine receptor 4 and programmed death-ligand 1 antibody and McCoy's 5A medium containing stromal cell-derived factor-1.Pure nanobubble solution was added in group F.After ultrasonic irradiation for 120 seconds and incubation for 48 hours,the survival rate of cells was measured by CCK-8 assay,and the healing and migration ability of cells in groups B-E were measured by wound healing test. RESULTS AND CONCLUSION:(1)Immunofluorescence staining showed that CXC chemokine receptor 4 and programmed death-ligand 1 protein could be expressed in all three kinds of cells.Western blot assay showed that the expression levels of CXC chemokine receptor 4 and programmed death-ligand 1 in SKOV3 and CAOV3 ovarian cancer cells were significantly higher than those in IOSE-80 normal ovarian epithelial cells(P<0.05).(2)CCK-8 assay results exhibited that the cell survival rate of group B was higher than that of group A(P<0.05).The cell survival rate of group F was lower than that of group A(P<0.05).The cell survival rate of groups B-E decreased gradually,and there were significant differences between the two groups(P<0.05).(3)Wound healing test demonstrated that the cell healing rate of groups B-E decreased gradually,and there were significant differences between the two groups(P<0.05).(4)The results show that the use of CXC chemokine receptor 4 antibody and programmed death-ligand 1 antibody double targeted nanobubbles under ultrasound-targeted microbubble destruction can significantly inhibit the proliferation and migration of ovarian cancer cells.

9.
Acta Pharmaceutica Sinica ; (12): 581-590, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1016621

RESUMEN

In the past few decades, microbubbles were widely used as ultrasound contrast agents in the field of tumor imaging. With the development of research, ultrasound targeted microbubble destruction technology combined with drug-loaded microbubbles can achieve precise drug release and play a therapeutic role. As a micron-scale carrier, microbubbles are difficult to penetrate the endothelial cell space of tumors, and nano-scale drug delivery system—nanobubbles came into being. The structure of the two is similar, but the difference in size highlights the unique advantages of nanobubbles in drug delivery. Based on the classification principle of shell materials, this review summarized micro/nanobubbles used for ultrasound diagnosis or treatment and discussed the possible development directions, providing references for the subsequent development.

10.
J Nanobiotechnology ; 21(1): 481, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102643

RESUMEN

BACKGROUND: Ultrasound-targeted microbubble destruction (UTMD) has emerged as a promising strategy for the targeted delivery of bone marrow mesenchymal stem cells (MSCs) to the ischemic myocardium. However, the limited migration capacity and poor survival of MSCs remains a major therapeutic barrier. The present study was performed to investigate the synergistic effect of UTMD with platelet-derived growth factor BB (PDGF-BB) on the homing of MSCs for acute myocardial infarction (AMI). METHODS: MSCs from male donor rats were treated with PDGF-BB, and a novel microbubble formulation was prepared using a thin-film hydration method. In vivo, MSCs with or without PDGF-BB pretreatment were transplanted by UTMD after inducing AMI in experimental rats. The therapeutic efficacy of PDGF-BB-primed MSCs on myocardial apoptosis, angiogenesis, cardiac function and scar repair was estimated. The effects and molecular mechanisms of PDGF-BB on MSC migration and survival were explored in vitro. RESULTS: The results showed that the biological effects of UTMD increased the local levels of stromal-derived factor-1 (SDF-1), which promoted the migration of transplanted MSCs to the ischemic region. Compared with UTMD alone, UTMD combined with PDGF-BB pretreatment significantly increased the cardiac homing of MSCs, which subsequently reduced myocardial apoptosis, promoted neovascularization and tissue repair, and increased cardiac function 30 days after MI. The vitro results demonstrated that PDGF-BB enhanced MSC migration and protected these cells from H2O2-induced apoptosis. Mechanistically, PDGF-BB pretreatment promoted MSC migration and inhibited H2O2-induced MSC apoptosis via activation of the phosphatidylinositol 3-kinase/serine-threonine kinase (PI3K/Akt) pathway. Furthermore, crosstalk between PDGF-BB and stromal-derived factor-1/chemokine receptor 4 (SDF-1/CXCR4) is involved in the PI3K/AKT signaling pathway. CONCLUSION: The present study demonstrated that UTMD combined with PDGF-BB treatment could enhance the homing ability of MSCs, thus alleviating AMI in rats. Therefore, UTMD combined with PDGF-BB pretreatment may offer exciting therapeutic opportunities for strengthening MSC therapy in ischemic diseases.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Infarto del Miocardio , Ratas , Masculino , Animales , Trasplante de Células Madre Mesenquimatosas/métodos , Becaplermina/farmacología , Microburbujas , Peróxido de Hidrógeno , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Infarto del Miocardio/terapia , Miocardio
11.
Mol Ther Nucleic Acids ; 33: 733-737, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37662969

RESUMEN

CRISPR-Cas9-based genome editing technologies, such as base editing, have the potential for clinical translation, but delivering nucleic acids into target cells in vivo is a major obstacle. Viral vectors are widely used but come with safety concerns, while current non-viral methods are limited by low transfection efficiency. Here we describe a new method to deliver CRISPR-Cas9 base editing vectors to the mouse liver using focused ultrasound targeted microbubble destruction (FUTMD). We demonstrate, using the example of cytosine base editing of the Pde3b gene, that FUTMD-mediated delivery of cytosine base editing vectors can introduce stop codons (up to ∼2.5% on-target editing) in mouse liver cells in vivo. However, base editing specificity is less than one might hope with these DNA constructs. Our findings suggest that FUTMD-based gene editing tools can be rapidly and transiently deployed to specific organs and sites, providing a powerful platform for the development of non-viral genome editing therapies. Non-viral delivery also reveals greater off-target base exchange in vivo than in vitro.

12.
Life Sci ; 331: 122067, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659592

RESUMEN

As our previous study showed, the therapeutic effect of two genes (SERCA2a and Cx43) on heart failure after myocardial infarction (MI) was greater than that of single gene (SERCA2a or Cx43) therapy for bone marrow stem cell (BMSC) transplantation. Based on previous research, the aim of this study was to investigate the optimal ratio of codelivery of SERCA2a and Cx43 genes for MI therapy after biotinylated microbubble (BMB) transplantation via ultrasonic-targeted microbubble destruction (UTMD). Forty rats underwent left anterior descending (LAD) ligation and BMSC injection into the infarct and border zones. Four weeks later, the genes SERCA2a and Cx43 were codelivered at different ratios (1:1, 1:2 and 2:1) into the infarcted heart via UTMD. Cardiac mechanoelectrical function was determined at 4 wks after gene delivery, and the hearts of the rats were harvested for measurement of MI size and detection of SERCA2a and Cx43 expression. Q-PCR analysis of the expression of Nkx2.5 and GATA4 in the myocardial infarct zone and measurement of neovascularization in infarcted hearts. After comparing the therapeutic effects of different cogene ratios, the SERCA2a/Cx43-1:2 group showed remarkable cardiac electrical stability and strengthened the role of anti-arrhythmia. In conclusion, the optimum ratio of the SERCA2a/Cx43 gene is 1:2, which is advantageous for maintaining cardiac electrophysiological stability.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Animales , Ratas , Conexina 43/genética , Infarto del Miocardio/genética , Corazón , Antiarrítmicos
13.
Ultrasound Med Biol ; 49(11): 2407-2412, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37659958

RESUMEN

OBJECTIVE: Our aim was to explore the feasibility of using ultrasound-targeted microbubble destruction (UTMD) to deliver tocilizumab and enhance its efficacy in treating rheumatoid arthritis (RA). METHODS: Rats with adjuvant-induced arthritis were randomly assigned to one of five treatment groups: group 1, tocilizumab + microbubbles (MBs) + UTMD; group 2, tocilizumab + MBs; group 3, tocilizumab + saline; group 4, MBs + UTMD; group 5, no treatment. We employed a commercially available ultrasound (US) machine capable of performing contrast-enhanced ultrasound (CEUS) and UTMD simultaneously using a single probe. CEUS was performed to monitor the entry and collapse of MBs. After treatment, the rats' left hindlimb paws were harvested for immunohistochemical staining of interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α). RESULTS: After injection of the mixture of drugs and MBs with UTMD, significant enhancement was seen in the inflamed hindlimb paw regions, which subsided immediately on exposure to low-frequency US beams and re-appeared in the intervals between beam exposures. IL-6 expression was significantly lower in groups 1, 2 and 3 than in groups 4 and 5 (p < 0.01). Group 1 had the lowest level of IL-6 expression (p [G1 vs. G2] < 0.01, p [G1 vs. G3] < 0.01). The levels of TNF-α expression in groups 1, 2, and 3 were significantly lower than those in groups 4 and 5, but no difference was observed in these levels between groups 1-3. CONCLUSION: UTMD shows promise in enhancing the treatment efficacy of anti-IL-6 drugs for RA treatment.


Asunto(s)
Artritis Reumatoide , Microburbujas , Animales , Ratas , Factor de Necrosis Tumoral alfa , Ultrasonido , Artritis Reumatoide/diagnóstico por imagen , Artritis Reumatoide/tratamiento farmacológico , Interleucina-6
14.
Tissue Eng Part A ; 29(23-24): 645-662, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37612613

RESUMEN

Peripheral nerve injury is prevalent and has a high disability rate in clinical settings. Current therapeutic methods have not achieved satisfactory efficacy, underscoring the need for novel approaches to nerve restoration that remains an active area of research in neuroscience and regenerative medicine. In this study, we isolated platelet-rich plasma-derived exosomes (PRP-exos) and found that they can significantly enhance the proliferation, migration, and secretion of trophic factors by Schwann cells (SCs). In addition, there were marked changes in transcriptional and expression profiles of SCs, particularly via the upregulation of genes related to biological functions involved in nerve regeneration and repair. In the rat model of sciatic nerve crush injury, ultrasound-targeted microbubble destruction (UTMD) enhanced the efficiency of PRP-exos delivery to the injury site. This approach ensured a high concentration of PRP-exos in the injured nerve and improved the therapeutic outcomes. In conclusion, PRP-exos may promote nerve regeneration and repair, and UTMD may increase the effectiveness of targeted PRP-exos delivery to the injured nerve and enhance the therapeutic effect.


Asunto(s)
Exosomas , Traumatismos de los Nervios Periféricos , Plasma Rico en Plaquetas , Ratas , Animales , Exosomas/metabolismo , Microburbujas , Células de Schwann , Traumatismos de los Nervios Periféricos/terapia , Traumatismos de los Nervios Periféricos/metabolismo , Regeneración Nerviosa
15.
Adv Sci (Weinh) ; 10(24): e2301759, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37350493

RESUMEN

Developing a multifunctional nanoplatform to achieve efficient theranostics of tumors through multi-pronged strategies remains to be challenging. Here, the design of the intelligent redox-responsive generation 3 (G3) poly(amidoamine) dendrimer nanogels (NGs) loaded with gold nanoparticles (Au NPs) and chemotherapeutic drug toyocamycin (Au/Toy@G3 NGs) for ultrasound-enhanced cancer theranostics is showcased. The constructed hybrid NGs with a size of 193 nm possess good colloidal stability under physiological conditions, and can be dissociated to release Au NPs and Toy in the reductive glutathione-rich tumor microenvironment (TME). The released Toy can promote the apoptosis of cancer cells through endoplasmic reticulum stress amplification and cause immunogenic cell death to maturate dendritic cells. The loaded Au NPs can induce the conversion of tumor-associated macrophages from M2-type to antitumor M1-type to remodulate the immunosuppressive TME. Combined with antibody-mediated immune checkpoint blockade, effective chemoimmunotherapy of a pancreatic tumor mouse model can be realized, and the chemoimmunotherapy effect can be further ultrasound enhanced due to the sonoporation-improved tumor permeability of NGs. The developed Au/Toy@G3 NGs also enable Au-mediated computed tomography imaging of tumors. The constructed responsive dendrimeric NGs tackle tumors through a multi-pronged chemoimmunotherapy strategy targeting both cancer cells and immune cells, which hold a promising potential for clinical translations.


Asunto(s)
Dendrímeros , Nanopartículas del Metal , Neoplasias Pancreáticas , Animales , Ratones , Nanogeles , Oro , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/tratamiento farmacológico , Oxidación-Reducción , Macrófagos , Microambiente Tumoral , Neoplasias Pancreáticas
16.
ACS Biomater Sci Eng ; 9(6): 3670-3679, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37184981

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease that mainly affects joints, and it can lead to disability and damage to vital organs if not diagnosed and treated in time. However, all current therapeutic agents for RA have limitations such as high dose, severe side effects, long-term use, and unsatisfactory therapeutic effects. The long-term use and dose escalation of methotrexate (MTX) may cause mild and severe side effects. To overcome the limitations, it is critical to target drug delivery to the inflamed joints. In this work, we constructed a folic acid-targeted and cell-mimetic nanodrug, MTX-loaded mesoporous silica composite nanoplatform (MMPRF), which can regulate drug release under ultrasound (US) and microbubble (MB) mediation. The targeted delivery and drug therapy were investigated through in vitro RAW264.7 cell experiments and in vivo collagen-induced arthritis animal experiments. The result showed that the targeting ability to the joints of MMPRF was strong and was more significant after US and MB mediation, which can potently reduce joint swelling, bone erosion, and inflammation in joints. This work indicated that the US- and MB-mediated MMPRF not only would be a promising method for synergistic targeted treatment of RA but also may show high potential for serving as a nanomedicine for many other biomedical fields.


Asunto(s)
Artritis Reumatoide , Nanopartículas , Animales , Artritis Reumatoide/diagnóstico por imagen , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inducido químicamente , Sistemas de Liberación de Medicamentos , Metotrexato/efectos adversos , Microburbujas , Nanopartículas/uso terapéutico
17.
Biomater Res ; 27(1): 41, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147703

RESUMEN

BACKGROUND: Large-dose melatonin treatment in animal experiments was hardly translated into humans, which may explain the dilemma that the protective effects against myocardial injury in animal have been challenged by clinical trials. Ultrasound-targeted microbubble destruction (UTMD) has been considered a promising drug and gene delivery system to the target tissue. We aim to investigate whether cardiac gene delivery of melatonin receptor mediated by UTMD technology optimizes the efficacy of clinically equivalent dose of melatonin in sepsis-induced cardiomyopathy. METHODS: Melatonin and cardiac melatonin receptors in patients and rat models with lipopolysaccharide (LPS)- or cecal ligation and puncture (CLP)-induced sepsis were assessed. Rats received UTMD-mediated cardiac delivery of RORα/cationic microbubbles (CMBs) at 1, 3 and 5 days before CLP surgery. Echocardiography, histopathology and oxylipin metabolomics were assessed at 16-20 h after inducing fatal sepsis. RESULTS: We observed that patients with sepsis have lower serum melatonin than healthy controls, which was observed in the blood and hearts of Sprague-Dawley rat models with LPS- or CLP-induced sepsis. Notably, a mild dose (2.5 mg/kg) of intravenous melatonin did not substantially improve septic cardiomyopathy. We found decreased nuclear receptors RORα, not melatonin receptors MT1/2, under lethal sepsis that may weaken the potential benefits of a mild dose of melatonin treatment. In vivo, repeated UTMD-mediated cardiac delivery of RORα/CMBs exhibited favorable biosafety, efficiency and specificity, significantly strengthening the effects of a safe dose of melatonin on heart dysfunction and myocardial injury in septic rats. The cardiac delivery of RORα by UTMD technology and melatonin treatment improved mitochondrial dysfunction and oxylipin profiles, although there was no significant influence on systemic inflammation. CONCLUSIONS: These findings provide new insights to explain the suboptimal effect of melatonin use in clinic and potential solutions to overcome the challenges. UTMD technology may be a promisingly interdisciplinary pattern against sepsis-induced cardiomyopathy.

18.
Eur J Pharm Sci ; 187: 106468, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37220818

RESUMEN

Owing to the difficult-to-penetrate blood-brain barrier (BBB), glioblastoma (GBM) doesn't respond well to the current chemical therapeutics. In this study, ultra-small micelles (NMs) self-assembled by RRR-a-tocopheryl succinate-grafted-ε-polylysine conjugate (VES-g-ε-PLL) as the delivery vehicle of chemical therapeutics in conjunction with ultrasound-targeted microbubble destruction (UTMD) to surmount BBB and treat GBM. Docetaxel (DTX) as a hydrophobic model drug was incorporated into NMs. DTX-loaded micelles (DTX-NMs) with 3.08% of drug loading exhibited a hydrodynamic diameter (33.2 nm) and positive Zeta potential (16.9 mV), having a remarkable tumor-permeating capacity. Furthermore, DTX-NMs presented good stability in physiologic condition. The sustained- release profile of DTX-NMs was also displayed by dynamic dialysis. Treatment of DTX-NMs together with UTMD led to more pronounced apoptosis of C6 tumor cells than DTX-NMs alone. Moreover, compared with the DTX solution or DTX-NMs alone, the combination of DTX-NMs with UTMD had a stronger inhibitory effect on tumor growth for GBM-bearing rats. The median survival period of GBM-bearing rats was extended to 75 days in the DTX-NMs+UTMD group from under 25 days in the control group. The invasive growth of glioblastoma was largely inhibited by the combination of DTX-NMs with UTMD, which was demonstrated by staining of Ki67, caspase-3, and CD31, together with TUNEL assay. In conclusion, the combination of ultra-small micelles (NMs) with UTMD may be a promising strategy to overcome the limitations of the first-line chemotherapeutics against GBM.


Asunto(s)
Antineoplásicos , Glioblastoma , Ratas , Animales , Docetaxel/farmacología , Micelas , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Microburbujas , Apoptosis , Antineoplásicos/química , Línea Celular Tumoral
19.
J Control Release ; 358: 319-332, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149150

RESUMEN

Hepatic fibrosis is the common pathway for most chronic liver diseases, characterized by excessive accumulation of extracellular matrix (ECM) proteins. It has been shown that fibrotic ECM significantly hindered passage of nanoparticles. Efforts have been made by decorating degrading enzymes on surfaces of nanosized delivery vehicles to improve drug delivery. However, these strategies are restricted by limiting shelf-life. Inspired by the application of sonoporation in assisting drug delivery through blood-brain barrier and tumor tissues, we investigated whether sonoporation can be an alternative strategy in improving drug delivery for fibrotic diseases. Hydroxycamptothecin (HCPT), a potential drug in treating liver fibrosis, was selected as a model drug to evaluate the drug delivery efficiency and therapeutic effect among three delivery strategies, i.e., (1) injection solution, (2) delivery through liposomes, and (3) delivery via sonoporation. Our study showed that in addition to the improved drug delivery efficiency, the combination of HCPT and sonoporation led to synergistic effect and the mechanisms were investigated. The treatment group of HCPT delivered with sonoporation achieved the most significant attenuation in liver fibrosis among the three delivery strategies.


Asunto(s)
Camptotecina , Sistemas de Liberación de Medicamentos , Humanos , Liposomas , Cirrosis Hepática , Microburbujas
20.
Acta Biomater ; 164: 604-625, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37080445

RESUMEN

Pathological cardiac hypertrophy occurs in response to numerous increased afterload stimuli and precedes irreversible heart failure (HF). Therefore, therapies that ameliorate pathological cardiac hypertrophy are urgently required. Sirtuin 3 (Sirt3) is a main member of histone deacetylase class III and is a crucial anti-oxidative stress agent. Therapeutically enhancing the Sirt3 transfection efficiency in the heart would broaden the potential clinical application of Sirt3. Ultrasound-targeted microbubble destruction (UTMD) is a prospective, noninvasive, repeatable, and targeted gene delivery technique. In the present study, we explored the potential and safety of UTMD as a delivery tool for Sirt3 in hypertrophic heart tissues using adult male Bama miniature pigs. Pigs were subjected to ear vein delivery of human Sirt3 together with UTMD of cationic microbubbles (CMBs). Fluorescence imaging, western blotting, and quantitative real-time PCR revealed that the targeted destruction of ultrasonic CMBs in cardiac tissues greatly boosted Sirt3 delivery. Overexpression of Sirt3 ameliorated oxidative stress and partially improved the diastolic function and prevented the apoptosis and profibrotic response. Lastly, our data revealed that Sirt3 may regulate the potential transcription of catalase and MnSOD through Foxo3a. Combining the advantages of ultrasound CMBs with preclinical hypertrophy large animal models for gene delivery, we established a classical hypertrophy model as well as a strategy for the targeted delivery of genes to hypertrophic heart tissues. Since oxidative stress, fibrosis and apoptosis are indispensable in the evolution of cardiac hypertrophy and heart failure, our findings suggest that Sirt3 is a promising therapeutic option for these diseases. STATEMENT OF SIGNIFICANCE: Pathological cardiac hypertrophy is a central prepathology of heart failure and is seen to eventually precede it. Feasible targets that may prevent or reverse disease progression are scarce and urgently needed. In this study, we developed surface-filled lipid octafluoropropane gas core cationic microbubbles that could target the release of human Sirt3 reactivating the endogenous Sirt3 in hypertrophic hearts and protect against oxidative stress in a pig model of cardiac hypertrophy induced by aortic banding. Sirt3-CMBs may enhance cardiac diastolic function and ameliorate fibrosis and apoptosis. Our work provides a classical cationic lipid-based, UTMD-mediated Sirt3 delivery system for the treatment of Sirt3 in patients with established cardiac hypertrophy, as well as a promising therapeutic target to combat pathological cardiac hypertrophy.


Asunto(s)
Insuficiencia Cardíaca , Sirtuina 3 , Humanos , Masculino , Animales , Porcinos , Microburbujas , Estudios Prospectivos , Cardiomegalia , Modelos Animales , Fibrosis , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA