Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Glob Health Med ; 6(4): 236-243, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39219582

RESUMEN

The aim of this study was to explore the effects of low-frequency ultrasound (US) combined with microbubbles (MBs) on breast cancer xenografts and explain its underlying mechanisms. A total of 20 xenografted nude mice were randomly divided into four groups: a group treated with US plus MBs (the US + MBs group), a group treated with US alone (the US group), a group treated with MBs alone (the MBs group), and a control group. In different groups, mice were treated with different US and injection regimens on an alternate day, three times in total. Histological changes, apoptosis of cells, microvascular changes, and the apoptosis index (AI) and microvascular density (MVD) of the breast cancer xenograft were analyzed after the mice were sacrificed. Results indicated that the tumor volume in the US + MBs group was smaller than that in the other three groups (p < 0.001 for all). The rate of tumor growth inhibition in the US + MBs group was significantly higher than that in the US and MBs groups (p < 0.001 for both). There were no significant differences in histological changes among the four groups. However, the AI was higher in the US + MBs group than that in the other three groups while the MVD was lower (p < 0.001 for all). All in all, low-frequency US combined with MBs can effectively slow down the growth of breast cancer in nude mice. In summary, low-frequency US combined with MBs has a significant effect on breast cancer treatment. Cavitation, thermal effects, and mechanical effects all play a vital role in the inhibition of tumor growth.

2.
Sci Rep ; 14(1): 16887, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043803

RESUMEN

Wastewater treatment is inevitably required to alleviate the pollution of water resources by various contaminants such as antibiotics. MOFs are novel materials with photocatalytic activities. In this study, sonophotocatalytic degradation of tetracycline (TC) by the Cerium-based MOF (Ce-MOF) is optimized by modification of its synthesis route. Ce-MOF synthesis by room temperature (RT), hydrothermal (HT), and sonochemical synthesis (SC) are studied. TC degradation experiments revealed the superiority of SC synthesis. The interplay of main synthesis parameters, namely, initial ligand concentration, ultrasound (US) power and time on sonophotocatalytic activity of Ce-MOF, were investigated by response surface methodology model (RSM) utilizing the central composite experimental design (CCD). The optimum SC synthesis conditions are an initial ligand concentration of 8.4 mmol/L, a sonication power of 50 amplitude, and a US time of 60 min. The optimally synthesized Ce-MOF was characterized by infrared spectroscopy, FTIR, XRD, FE-SEM, TEM, zeta potential analysis, diffuse reflectance spectroscopy, particle size analysis, Mott-Schottky analysis, photocurrent analysis, electrochemical impedance spectra, and photoluminescence spectroscopy. The findings indicate that the removal efficiency of TC can reach up to 81.75% within 120 min in an aqueous solution containing an initial TC concentration of 120 ppm and 1 g/L Ce-MOF at pH of 7. Mineralization efficiency of the process is 71% according to COD measurements. The Ce-MOF catalyst retained its chemical stability and remained active upon TC degradation which makes it a promising candidate for wastewater treatment.

3.
Bioresour Technol ; 403: 130873, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782192

RESUMEN

The Escherichia coli (E.coli) degrading glucose irradiated by ultrasound irradiation (20 W, 14 min) was investigated as the model system, the glucose degradation increased by 13 % while the E.coli proliferation decreased by 10 % after culture for 18 h. It indicated a tradeoff effect between substrate degradation and cell proliferation, which drove the enhanced contaminants removal and excess sludge reduction in a weak ultrasound enhanced biological wastewater treatment. The enzymatic activities (catalase, superoxide dismutase, adenosine triphosphatases, lactic dehydrogenase, membrane permeability, intracellular reactive oxygen species and calcium ion of E. coli increased immediately by 12 %, 63 %, 124 %, 19 %, 15 %, 4-fold and 38-fold, respectively by ultrasound irradiation power of 20 W for 14 min. Furthermore, the membrane permeability of irradiated E. coli increased by 26 % even though the ultrasound stopped for 10 h. Additionally, pathways associated with glucose degradation and cell proliferation were continuously up-regulated and down-regulated, respectively.


Asunto(s)
Escherichia coli , Glucosa , Aguas Residuales , Escherichia coli/metabolismo , Glucosa/metabolismo , Purificación del Agua/métodos , Especies Reactivas de Oxígeno/metabolismo , Biodegradación Ambiental , Ondas Ultrasónicas , Modelos Biológicos , Permeabilidad de la Membrana Celular , Proliferación Celular , Aguas del Alcantarillado/microbiología
4.
Mater Today Bio ; 26: 101067, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38706730

RESUMEN

The blood-brain Barrier (BBB), combined with immune clearance, contributes to the low efficacy of drug delivery and suboptimal treatment outcomes in glioma. Here, we propose a novel approach that combines the self-assembly of mouse bone marrow-derived macrophage membrane with a targeted positive charge polymer (An-PEI), along with low-frequency ultrasound (LFU) irradiation, to achieve efficient and safe therapy for glioma. Our findings demonstrate the efficacy of a charge-induced self-assembly strategy, resulting in a stable co-delivery nanosystem with a high drug loading efficiency of 44.2 %. Moreover, this structure triggers a significant release of temozolomide in the acidic environment of the tumor microenvironment. Additionally, the macrophage membrane coating expresses Spyproteins, which increase the amount of An-BMP-TMZ that can evade the immune system by 40 %, while LFU irradiation treatment facilitates the opening of the BBB, allowing for enormously increased entry of An-BMP-TMZ (approximately 400 %) into the brain. Furthermore, after crossing the BBB, the Angiopep-2 peptide-modified An-BMP-TMZ exhibits the ability to selectively target glioma cells. These advantages result in an obvious tumor inhibition effect in animal experiments and significantly improve the survival of glioma-bearing mice. These results suggest that combining the macrophage membrane-coated drug delivery system with LFU irradiation offers a feasible approach for the accurate, efficient and safe treatment of brain disease.

5.
J Hazard Mater ; 468: 133742, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38367436

RESUMEN

Harmful algal blooms (HABs) significantly impact on water quality and ecological balance. Ultrasound irradiation has proven to be an effective method for algal control. Nevertheless, the molecular mechanisms underlying the inactivation of M. aeruginosa by ultrasound are still unknown. In this study, the physiological activity and molecular mechanism of algal cells exposed to different frequencies of ultrasound were studied. The results indicated a pronounced inhibition of algal cell growth by high-frequency, high-dose ultrasound. Moreover, with increasing ultrasound dosage, there was a higher percentage of algal cell membrane ruptures. SEM and TEM observed obvious disruptions in membrane structure and internal matrix. Hydroxyl radicals generated by high-frequency ultrasound inflicted substantial cell membrane damage, while increased antioxidant enzyme activities fortified cells against oxidative stress. Following 2 min of ultrasound irradiation at 740 kHz, significant differential gene expression occurred in various aspects, including energy metabolism, carbohydrate metabolism, and environmental information processing pathways. Moreover, ultrasound irradiation influenced DNA repair and cellular apoptosis, suggesting that the algal cells underwent biological stress to counteract the damage caused by ultrasound. These findings reveal that ultrasound irradiation inactivates algae by destroying their cell structures and metabolic pathways, thereby achieving the purpose of algal suppression.


Asunto(s)
Microcystis , Microcystis/metabolismo , Ondas Ultrasónicas , Antioxidantes/metabolismo , Floraciones de Algas Nocivas , Estrés Oxidativo
6.
Curr Org Synth ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38231062

RESUMEN

Oxazolines are important heterocyclic systems due to their biological activities, such as antibacterial, antimalarial, anticancer, antiviral, anti-inflammatory, antifungal, antipyretic, and antileishmanial. They have been widely applied as chiral auxiliaries, polymers, catalysts, protecting groups, building blocks, and ligands in asymmetric synthesis. Due to their importance, many synthetic routes to prepare oxazoline moieties have been investigated and developed by researchers around the world. In this review, we summarized several synthetic methodologies published in the literature. The main substrates are nitriles, carboxylic acids, and acid derivatives, which react with a variety of reactants under conventional heating, microwave irradiation or ultrasound irradiation conditions. Syntheses via intramolecular cyclisation from amides have also been reported. Many publications have highlighted procedures based on solvent-free conditions using eco-friendly, reusable, and easy-availability catalysts.

7.
Int J Radiat Biol ; 100(3): 445-452, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38166555

RESUMEN

PURPOSE: Evaluate the structural damage and the changes in the photosynthesis and transpiration rates of aquatic lirium leaves caused by ultrasound (US) irradiation in search of environmentally friendly methodologies for the control of this weed. MATERIALS AND METHODS: Aquatic lirium plants were extracted from Xochimilco water canals in Mexico City. A part of the group of plants was selected for irradiation, and the rest formed the control group. The irradiation plants group was exposed to US irradiation of 17 kHz frequency and 30 W × 4 output power for 2 h, at noon and 25 °C room temperature. The structural analysis was done with a MOTICAM 1 digital camera, 800 × 600 pixels, incorporated into the MOTIC PSM-1000 optical microscope and edited with Motic Images Plus 2.0 ML software. The total stomata density and the damaged stomata density were determined by dividing the numbers of total and damaged stomata by the visual field area (67,917 mm2), respectively. The leaves' photosynthesis and transpiration rates were measured using an LI-6400XT Portable Photosynthesis System. RESULTS: Significant damage was observed in the stomata and epidermal cells, finding that the average ratio between the damaged and total stomata densities as a function of time (days) showed an exponential increase described by a Box-Lucas equation with a saturation value near unity and a maximum rate of change of the density of damaged stomata on zero-day (immediately after irradiation), decreasing as the days go by. The transpiration rate showed a sudden increase during the first hour after irradiation, reaching a maximum of 36% of its value before irradiation. It then quickly fell during the next 6 days and more slowly until the 21st day, decreasing 79.9% of its value before irradiation. The photosynthetic rate showed similar behavior with a 37.7% maximum increment and a 73.6% minimum decrease of its value before irradiation. CONCLUSIONS: The results of structural stomata damage on the ultrasound-irradiated aquatic lirium leaves are consistent with an excessive ultrasound stimulation on stomata's mechanical operation by guard cells that produce the measured significant increase of the photosynthetic and transpiration rates during the first hour after irradiation. The initial high evaporation could alter the water potential gradient, with a possible generation of tensions in the xylem that could cause embolism in their conduits. The loss of xylem conductivity or hydraulic failure would be consistent with the observed significant fall in the photosynthesis and transpiration rates of the aquatic lirium leaves after its sudden rise in the first hour after irradiation.


Asunto(s)
Estomas de Plantas , Transpiración de Plantas , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Fotosíntesis , Hojas de la Planta , Agua
8.
Ultrasound Med Biol ; 49(9): 2160-2168, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37414634

RESUMEN

OBJECTIVE: Noble metal nanomaterials have been introduced as ideal sonosensitizers for sonodynamic therapy (SDT) of cancer. In this research, platinum nanoparticles (PtNPs) and mesoporous platinum (MPt) were first synthesized and then evaluated as novel sonosensitizers. METHODS: Ultrasound waves were radiated at two different power densities and two different pulse ratios to develop a pulsed radiation route for SDT of the malignant melanoma cell line C540 (B16/F10). Fluorescence emission was recorded as an indicator of intracellular reactive oxygen generation during the treatment. RESULTS: Platinum nanoparticles had an average diameter of 12 ± 7 nm and a zeta potential of -17.6 mV; also, MPt had a sponge-like and highly porous structure with a pore size <11 nm and a zeta potential of -39.5 mV. Both PtNPs and MPt, particularly the latter, enhanced the rate of inhibition of tumor cell growth on ultrasound radiation at an output power density of 1.0 W cm-2 and pulse ratio of 30% over 10 min without intensifying temperature. CONCLUSION: Use of the developed pulsed (rather than continuous) radiation in SDT and PtNPs or MPT, without hyperthermia, resulted in a new effective cancer treatment method based on the mechanisms of cavitation and/or ROS generation.


Asunto(s)
Melanoma , Nanopartículas del Metal , Nanopartículas , Nanoestructuras , Neoplasias , Terapia por Ultrasonido , Humanos , Platino (Metal)/química , Platino (Metal)/farmacología , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Melanoma/terapia , Terapia por Ultrasonido/métodos , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo
9.
Prostate ; 83(12): 1217-1226, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37221965

RESUMEN

BACKGROUND: Ultrasound (US) can induce cell injury, and we have previously reported that adjusting the pulse repetition frequency (PRF) of ultrasound output can induce prostate cancer cell destruction without causing a rise in the temperature of the irradiated area. In this study, we examined the mechanism of nonthermal ultrasound cell destruction, which was not fully clarified in our previous reports. METHODS: In vitro, we evaluated postirradiation cells immediately after treatment and examined membrane disruption by proliferation assay, LDH assay, and apoptosis assay. In vivo, we injected mice with human LNCaP and PC-3 prostate cancer cells and evaluated the therapeutic effects of US irradiation by H-E staining and immunostaining. RESULTS: Proliferation assays showed inhibition at 3 h postirradiation independently of PRF and cell line (p < 0.05). Quantitative assessment of apoptosis/necrosis by flow cytometry showed widely varying results depending on cell type. LNCaP showed an increase in late apoptosis at 0 h independent of PRF (p < 0.05), while PC-3 showed no significant difference at 0 h. The LDH assay showed an increase in LDH independent of PRF in LNCaP (p < 0.05 respectively), but no significant difference in PC-3. In vivo, tumor volume was compared and a significant reduction was observed at 10 Hz for LNCaP (p < 0.05) and 100 Hz for PC-3 (p < 0.001) at 3 weeks after the start of irradiation. The excised tumors were evaluated with Ki-67, Caspase-3, and CD-31 and showed a significant treatment effect independent of cell type and PRF (p < 0.001 respectively). CONCLUSION: Examining the mechanism behind the therapeutic effect of US irradiation revealed that the main effect was achieved by apoptosis induction rather than necrosis.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Ratones Desnudos , Neoplasias de la Próstata/metabolismo , Próstata/patología , Apoptosis , Modelos Animales de Enfermedad , Necrosis , Línea Celular Tumoral
10.
ACS Nano ; 17(5): 4102-4133, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36802411

RESUMEN

Sonodynamic therapy (SDT) has emerged as a promising therapeutic modality for anticancer treatments and is becoming a cutting-edge interdisciplinary research field. This review starts with the latest developments of SDT and provides a brief comprehensive discussion on ultrasonic cavitation, sonodynamic effect, and sonosensitizers in order to popularize the basic principles and probable mechanisms of SDT. Then the recent progress of MOF-based sonosensitizers is overviewed, and the preparation methods and properties (e.g., morphology, structure, and size) of products are presented in a fundamental perspective. More importantly, many deep observations and understanding toward MOF-assisted SDT strategies were described in anticancer applications, aiming to highlight the advantages and improvements of MOF-augmented SDT and synergistic therapies. Last but not least, the review also pointed out the probable challenges and technological potential of MOF-assisted SDT for the future advance. In all, the discussions and summaries of MOF-based sonosensitizers and SDT strategies will promote the fast development of anticancer nanodrugs and biotechnologies.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Terapia por Ultrasonido , Humanos , Estructuras Metalorgánicas/farmacología , Ultrasonido , Neoplasias/tratamiento farmacológico
11.
Curr Org Synth ; 20(3): 278-307, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35366777

RESUMEN

BACKGROUND: 2-Hydroxy-1,4-Naphthoquinone (HNQ; Lawsone) is one of the most useful and the simplest naturally occurring naphthoquinones and has stimulated a resurgence of interest in the past decades due to a wide range of pharmacological activities. INTRODUCTION AND METHODS: This activity has led to the unusually large emphasis being placed on the design of more efficient multi-component reactions (MCRs) in the synthesis of bioactive lawsone derivatives. RESULTS AND CONCLUSION: This review highlights the recent developments in multi-component synthesis of biologically relevant naphthoquinone linked and fused heterocyclic derivatives carried out from 2015 till now.

12.
Sci Total Environ ; 862: 160836, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521599

RESUMEN

Per-and polyfluoroalkyl substances (PFAS) remediation is still a challenge. In this study, we propose a hybrid system that combines electrochemical treatment with ultrasound irradiation, aiming for an enhanced degradation of PFAS. Equipped with a titanium suboxide (Ti4O7) anode, the electrochemical cell is able to remove perfluorooctanoic acid (PFOA) effectively. Under the optimal conditions (50 mA/cm2 current density, 0.15 M Na2SO4 supporting electrolyte, and stainless steel/Ti4O7/stainless steel electrode configuration with a gap of ∼10 mm), the electrochemical process achieves ∼100 % PFOA removal and 43 % defluorination after 6 h. Applying ultrasound irradiation (130 kHz) alone offers a limited PFOA removal, with 33 % PFOA removal and 5.5 % defluorination. When the electrochemical process is combined with ultrasound irradiation, we observe a significant improvement in the remediation performance, with ∼100 % PFOA removal and 63.5 % defluorination, higher than the sum of 48.5 % (43 % achieved by the electrochemical process, plus 5.5 % by the ultrasound irradiation), implying synergistic removal/oxidation effects. The hybrid system also consistently shows the synergistic defluorination during degradation of other PFAS and the PFAS constituents in aqueous film forming foam (AFFF). We attribute the synergistic effect to an activated/cleaned electrode surface, improved mass transfer, and enhanced production of radicals.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Titanio , Acero Inoxidable , Contaminantes Químicos del Agua/análisis , Agua , Fluorocarburos/análisis , Electrodos
13.
Front Pharmacol ; 13: 1065289, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36582521

RESUMEN

Sarcoma is a malignant tumor derived from interstitial tissues and requires comprehensive treatment including chemotherapy. Paclitaxel (PTX) is an active agent against sarcoma, but its effect is not sufficiently acceptable and needs to be improved. Low-frequency ultrasound (LFU) has been documented to improve the efficacy of drugs by inducing reversible changes in membrane permeability; however, the effects of the combined use of LFU and PTX for sarcoma tumors remain unclear and warrant further investigation. We investigated the effects of 30 kHz LFU treatment combined with PTX on sarcoma cells A-204 and HT-1080 by analyzing in vitro apoptosis and cell growth inhibition rates, and determined their antitumor effects by examining tumor weights with or without LFU in the S180 sarcoma xenograft model. Drug concentrations in the subcutaneous tumors were measured using high performance liquid chromatography (HPLC). LFU combined with PTX significantly induced cell apoptosis, and blocked the cell cycle of sarcoma cells in G2/M phase, and furthermore, inhibited the activation of JAK2/STAT3 signaling pathway. Meanwhile, LFU combined with PTX inhibited the expression of PD-L1 in vitro, suggesting the potential of enhanced antitumor immunity by this treatment. LFU combined with PTX significantly inhibited the growth of S180 tumors transplanted subcutaneously in Institute of Cancer Research (ICR) mice, and its enhanced effect may be associated with increased local concentrations of PTX in tumor tissues in vivo, with no significant adverse subsequences on body weight observed. We conclude that the combination of LFU and PTX has synergistic antitumor effects and is a candidate for subcutaneous treatment of sarcoma by further increasing the intracellular concentration of PTX.

14.
Top Curr Chem (Cham) ; 381(1): 1, 2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36370211

RESUMEN

Coumarins (2H-1-benzopyran-2-ones) are an important group of biological heterocyclic compounds present in various parts of many plant species, encompassing an array of biological and pharmaceutical activities. In view of the importance of coumarins in heterocyclic chemistry and biological sciences and recent advances in the design of magnetic nanocatalysts, we present herein recent developments pertaining to their synthesis exclusively using magnetic nanoparticles, which can be retrieved easily and thus conform to the tenets of greener synthesis. The preparation of various types of coumarins such as Pechmann-based coumarins, bis coumarins, pyranocoumarins, and coumarin derivatives bearing amine moiety, linked to nicotinonitriles, N-coumarin-2-furanone, and pyrrole-linked chromene derivatives using nanocatalysts with a Fe3O4 core are described. This review covers the synthetic developments in the recent years 2012-2021 and focuses entirely on the synthesis of coumarins in the presence of magnetic nanocatalysts using greener approaches such as solvent-free conditions or deploying alternative activation methods, namely microwave or ultrasound irradiation.


Asunto(s)
Cumarinas , Microondas , Cumarinas/química , Solventes/química
15.
Ultrason Sonochem ; 87: 106037, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35709576

RESUMEN

There are many problems associated with the synthesis of nanocatalysts and catalytic reduction of nitroarenes - e.g., high temperatures, costs, long reaction/synthesis process times, the toxicity of chemicals/solvents, undesirable byproducts, the toxic/harmful wastes, low efficiency/selectivity, etc. This study represents an attempt to overcome these challenges. To this purpose, biocompatible and highly efficient Ag2Se quantum dots (QDs) catalysts with antibacterial activity were synthesized in a very rapid (30 sec, rt), simple, inexpensive, sustainable/green, and one-pot strategy in water using ultrasonic irradiation. Characterization of the QDs was performed using different techniques. UV-Vis absorption and fluorescence spectroscopic studies showed an absorption peak at 480-550 nm and a maximum emission peak around 675 nm, which confirmed the successful synthesis of Ag2Se QDs via the applied biosynthetic method. Subsequently, catalytic reduction of nitroarenes by them was carried out under safe conditions (H2O, rt, air atmosphere) in âˆ¼ 60 min with excellent yield and selectivity (>99%). Their catalytic activity in the reduction of various toxic nitroarenes to aminoarenes under green conditions was investigated. Thus, a rapid and safe ultrasound-based method was employed to prepare stable and green Ag2Se QDs phyto-catalysts with unique properties, including exquisite monodispersity in shape (orthorhombic) and size (∼7 nm), air-stability, and good purity and crystallinity. Importantly, instead of various toxic chemicals, the plant extract obtained by rapid ultrasonic method (10 min, rt) was used as natural reducing, capping, and stabilizing agents. Moreover, antibacterial assays results showed that Ag2Se-QDs catalysts at low concentrations (ppm) have high activity against all tested bacteria, especially E. coli (MIC:31.25 ppm, MBC:125 ppm) which were significantly different from those of Fig extract (MIC = MBC:500 ppm). The data reflect the role of these bio-synthesized Ag2Se-QDs catalysts in the development of versatile and very safe catalysts with biomedical properties.


Asunto(s)
Compuestos de Anilina , Ultrasonido , Antibacterianos/toxicidad , Escherichia coli , Temperatura , Agua/química
16.
Biomolecules ; 12(5)2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35625527

RESUMEN

Enzyme activation is a powerful means of achieving biotransformation function, aiming to intensify the reaction processes with a higher yield of product in a short time, and can be exploited for diverse applications. However, conventional activation strategies such as genetic engineering and chemical modification are generally irreversible for enzyme activity, and they also have many limitations, including complex processes and unpredictable results. Recently, near-infrared (NIR), alternating magnetic field (AMF), microwave and ultrasound irradiation, as real-time and precise activation strategies for enzyme analysis, can address many limitations due to their deep penetrability, sustainability, low invasiveness, and sustainability and have been applied in many fields, such as biomedical and industrial applications and chemical synthesis. These spatiotemporal and controllable activation strategies can transfer light, electromagnetic, or ultrasound energy to enzymes, leading to favorable conformational changes and improving the thermal stability, stereoselectivity, and kinetics of enzymes. Furthermore, the different mechanisms of activation strategies have determined the type of applicable enzymes and manipulated protocol designs that either immobilize enzymes on nanomaterials responsive to light or magnetic fields or directly influence enzymatic properties. To employ these effects to finely and efficiently activate enzyme activity, the physicochemical features of nanomaterials and parameters, including the frequency and intensity of activation methods, must be optimized. Therefore, this review offers a comprehensive overview related to emerging technologies for achieving real-time enzyme activation and summarizes their characteristics and advanced applications.


Asunto(s)
Nanoestructuras , Activación Enzimática , Cinética , Campos Magnéticos , Nanoestructuras/química , Ondas Ultrasónicas
17.
J Clin Med ; 11(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35566574

RESUMEN

Background: Ultrasound (US) is mostly used for diagnostic purpose but could be used for cancer treatments with a US intensity or frequency fitted to such a purpose. Prostate cancer (PC) has the highest prevalence in the urological field, but indications for immune checkpoint inhibitors (ICIs) for PC are limited to very few cases. In this study, we compared the antitumor effect of US irradiation alone with the combined use of US and ICIs in vitro and in vivo. Methods: PC cell line TRAMP-C2 cells were used in our experiments. TRAMP-C2 cells were irradiated with US with pulse repeated frequencies (PRF) of 1, 10, and 100 Hz. Cell proliferation was evaluated by MTS assay and apoptotic cells were analyzed using flow cytometry. To verify the antitumor effect of US irradiation on PC in vivo, we conducted animal experiments using mice. TRAMP-C2-bearing mice were irradiated with US with PRF of 10 and 100 Hz. Three weeks after the start of US irradiation, anti-PD-1 antibody was administered to the mice. Finally, mice were sacrificed and tumors were collected. Immunohistochemical (IHC) analyses were assessed for cleaved caspase-3 and CD3 in tumor cell extracts. Results: Cell proliferation assays showed that 1 and 10 Hz US significantly inhibited cell survival (p < 0.0001). In addition, US irradiation induced apoptosis at 1, 10, and 100 Hz (p = 0.0129, p = 0.0150, and p = 0.0017, respectively). In animal experiments, a significant tumor growth inhibitory effect was observed at 10 and 100 Hz, and 100 Hz + ICIs (p < 0.05, respectively). Hematoxylin−eosin (H−E) staining showed a significant increase in the necrotic area of the tumor at 100 Hz and 100 Hz + ICIs (p < 0.05, respectively). In addition, under IHC staining the expression level of cleaved caspase-3 and the number of CD3-positive cells increased at 100 Hz (p < 0.05, respectively). Conclusion: US irradiation induced apoptosis in cells and reduced cell viability. In vivo tumor growth was suppressed by combined treatment with US irradiation and ICIs. Further research on immune system activation will lead to less invasive and more efficient treatments for PC.

18.
Molecules ; 27(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35630657

RESUMEN

We report here an energy-efficient and straight synthesis of two new classes of derivatized fluorescent azatetracycles under ultrasound (US) irradiation. A first class of azatetracyclic compounds was synthesized by heterogeneous catalytic bromination of the α-keto substituent attached to the pyrrole moiety of the tetracyclic cycloadducts, while for the second, one class was synthesized by nucleophilic substitution of the bromide with the azide group. Comparative with conventional thermal heating (TH) under US irradiation, both types of reactions occur with substantially higher yields, shortened reaction time (from days to hours), lesser energy consumed, easier workup of the reaction, and smaller amounts of solvent required (at least three to five-fold less compared to TH), which make these reactions to be considered as energy efficient. The derivatized azatetracycle are blue emitters with λmax of fluorescence around 430-445 nm. A certain influence of the azatetracycle substituents concerning absorption and fluorescent properties was observed. Compounds anchored with a bulky azide group have shown decreased fluorescence intensity compared with corresponding bromides.


Asunto(s)
Azidas , Calefacción , Fluorescencia , Pirroles
19.
Bioengineered ; 13(4): 11050-11060, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35481425

RESUMEN

In the context of relatively sufficient research that annotated WNT1 inducible signaling pathway protein 1 (WISP1) as a promoting factor in tumor progression of breast cancer, and identified the effects of ultrasound microbubble technology on enhancing the transfection efficiency and achieving better gene interference, this study managed to investigate the effects of ultrasound microbubble-mediated siWISP1 transfection on proliferation and metastasis of breast cancer cells. To achieve our research objectives, the expression of WISP1 in breast cancer tissues was retrieved from GEPIA website, and the viability of breast cancer cells (SK-BR-3 and MCF7) was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for ultrasound intensity screening. After the transfection of siWISP1 by ultrasound microbubble or lipofectamine 6000, the content of WISP1 secreted by cells was detected through Enzyme-linked immunosorbent assay (ELISA), and WISP1 expression in cells was determined by quantitative reverse transcription polymerase-chain reaction (qRT-PCR). Besides, the cell invasion, migration, and proliferation were evaluated by wound healing, transwell, and EdU assays, respectively. In accordance with experimental results, WISP1 was highly expressed in breast cancer tissues, and the 1 W/cm2 intensity was the onset of a notable decrease in cell viability. Compared with lipofectamine 6000 transfection, the transfection of siWISP1 mediated by ultrasound microbubble further reduced the expression of WISP1, and meanwhile suppressed cell invasion, migration, and proliferation. Collectively, ultrasound microbubble-mediated transfection of siWISP1 worked rather effectively in improving transfection efficiency and inhibiting the progression of breast cancer.


Asunto(s)
Neoplasias de la Mama , Microburbujas , Neoplasias de la Mama/genética , Proliferación Celular/genética , Femenino , Humanos , Interferencia de ARN , Transducción de Señal/genética
20.
Ultrason Sonochem ; 86: 105997, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35417794

RESUMEN

Ultrasonic atomization induced by high driving frequency, generally on the order of 1 MHz or higher, could involve a liquid fountain in the form of a corrugated jet, or a chain of "beads" of submillimeter diameter in contact. This study concerns dynamics/instability of such beads fountain, observed under lower input power density (≤ 6 W/cm2) of the "flat" ultrasound transducer with a "regulating" nozzle equipped, exhibiting time-varying characteristics with certain periodicity. High-speed, high-resolution images are processed for quantitative elucidation: frequency analysis (fast Fourier transform) and time-frequency analysis (discrete wavelet transform) are employed, respectively, to evaluate dominant frequencies of beads-surface oscillations and to reveal factor(s) triggering mist emergence. The resulting time variation in the measured (or apparent) fountain structure, associated with the recurring-beads size scalable to the ultrasound wavelength, subsumes periodic nature predictable from simple physical modeling as well as principle. It is further found that such dynamics in (time-series data for) the fountain structure at given height(s) along a series of beads would signal "bursting" of liquid droplets emanating out of a highly deformed bead often followed by a cloud of tiny droplets, or mist. In particular, the bursting appears to be not a completely random phenomenon but should concur with the fountain periodicity with a limited extent of probability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA