Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 657
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39273154

RESUMEN

UV-B stress destroys the photosynthetic system of Rhododendron chrysanthum Pall. (R. chrysanthum), as manifested by the decrease of photosynthetic efficiency and membrane fluidity, and also promotes the accumulation of lignin. The MYB (v-myb avian myeloblastosis viral oncogene homolog) family of transcription factors can be involved in the response to UV-B stress through the regulation of lignin biosynthesis. This study indicated that both the donor and recipient sides of the R. chrysanthum were significantly damaged based on physiological index measurements made using OJIP curves under UV-B stress. The analysis of bioinformatics data revealed that the RcTRP5 transcription factor exhibits upregulation of acetylation at the K68 site, directly regulating the biosynthesis of lignin. Additionally, there was upregulation of the K43 site and downregulation of the K83 site of the CAD enzyme, as well as upregulation of the K391 site of the PAL enzyme. Based on these findings, we conjectured that the RcTRP5 transcription factor facilitates acetylation modification of both enzymes, thereby indirectly influencing the biosynthesis of lignin. This study demonstrated that lignin accumulation can alleviate the damage caused by UV-B stress to R. chrysanthum, which provides relevant ideas for improving lignin content in plants, and also provides a reference for the study of the metabolic regulation mechanism of other secondary substances.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lignina , Proteínas de Plantas , Factores de Transcripción , Rayos Ultravioleta , Lignina/biosíntesis , Lignina/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Acetilación
2.
Int J Radiat Biol ; : 1-12, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231421

RESUMEN

PURPOSE: The increasing amounts of ultraviolet-B (UV-B) light in our surroundings have sparked worries about the possible effects on humans and plants. The detrimental effects of heightened UV-B exposure on these two vital elements of terrestrial life are different due to their unique and concurrent nature. Understanding common vulnerabilities and distinctive adaptations of UV-B radiation by exploring the physiological and biochemical responses of plants and the effects on human health is of huge importance. The comparative effects of UV-B radiation on plants and animals, however, are poorly studied. This review sheds light on the sophisticated web of UV-B radiation effects by navigating the complex interaction between botanical and medical perspectives, drawing upon current findings. CONCLUSION: By providing a comprehensive understanding of the complex effects of heightened UV-B radiation on plants and humans, this study summarizes relevant adaptation strategies to the heightened UV-B radiation stress, which offer new approaches for improving human cellular resilience to environmental stressors.

3.
J Cosmet Dermatol ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248229

RESUMEN

BACKGROUND: The aim of this study was to investigate the protective effect of quercetin loaded on solid lipid nanoparticles (SLN) in protecting human hair from ultraviolet-B (UV-B) light in vitro. METHODS: In this study, solvent-emulsified diffusion method was used to fabricate nanoparticle formulations and then particle size, loading, and drug release tests were performed from different formulations. Variables include oily part proportion, liquid to solid oil part ratio, and surfactant to lipid ratio. The optimal formulation was prepared by examining the eight formulations and optimizing them. Six groups of hair with different treatments were exposed to UV light for 600 h and the changes were investigated by examining four factors: RMS (root mean square average, the microscopic profile peaks and valleys), peak to valley roughness, the amount of chemical changes by Fourier transform infrared spectroscopy (FTIR), and the amount of protein loss. RESULTS: The selected formulation had a suitable particle size, loading percent, and release rate for penetration to hair. Quercetin-loaded SLN controlled RMS factor, peak to valley roughness, and reduced chemical changes and protein loss compared to other treatments. CONCLUSION: The optimize formulation showed positive effects in protecting the hair strands from UV-B radiation.

4.
Microbiome ; 12(1): 165, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244575

RESUMEN

BACKGROUND: To adapt to constantly changing environments, ancient gymnosperms have coevolved with diverse endophytic fungi that are essential for the fitness and adaptability of the plant host. However, the effect of sex on plant-endophyte interactions in response to environmental stressors remains unknown. RNA-seq integrated with ITS analysis was applied to reveal the potential mechanisms underlying the sex-specific responses of Taxus mairei to ultraviolet (UV)-B radiation. RESULTS: Enrichment analysis suggested that sex influenced the expression of several genes related to the oxidation-reduction system, which might play potential roles in sex-mediated responses to UV-B radiations. ITS-seq analysis clarified the effects of UV-B radiation and sex on the composition of endophytic fungal communities. Sex influenced various secondary metabolic pathways, thereby providing chemicals for T. mairei host to produce attractants and/or inhibitors to filter microbial taxa. Analysis of fungal biomarkers suggested that UV-B radiation reduced the effect of sex on fungal communities. Moreover, Guignardia isolate #1 was purified to investigate the role of endophytic fungi in sex-mediated responses to UV-B radiation. Inoculation with spores produced by isolate #1 significantly altered various oxidation-reduction systems of the host by regulating the expression of APX2, GST7 NCED1, ZE1, CS1, and CM1. CONCLUSION: These results revealed the roles of endophytic fungi in sex-mediated responses to UV-B radiation and provided novel insights into the sex-specific responses of Taxus trees to environmental stressors. Video Abstract.


Asunto(s)
Metabolismo Secundario , Taxus , Rayos Ultravioleta , Taxus/microbiología , Endófitos/genética , Endófitos/metabolismo , Hongos/genética , Hongos/clasificación , Hongos/efectos de la radiación , Hongos/metabolismo , Microbiota
5.
Plant J ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158506

RESUMEN

C-glycosides are a predominant class of flavonoids that demonstrate diverse medical properties and plant physiological functions. The chemical stability, structural diversity, and differential aboveground distribution of these compounds in plants make them ideal protectants. However, little is known about the transcriptional regulatory mechanisms that play these diverse roles in plant physiology. In this study, chard was selected from 69 families for its significantly different flavonoid C-glycosides distributions between the aboveground and underground parts to investigate the role and regulatory mechanism of flavonoid C-glycosides in plants. Our results indicate that flavonoid C-glycosides are affected by various stressors, especially UV-B. Through cloning and validation of key biosynthetic genes of flavonoid C-glycosides in chard (BvCGT1), we observed significant effects induced by UV-B radiation. This finding was further confirmed by resistance testing in BvCGT1 silenced chard lines and in Arabidopsis plants with BvCGT1 overexpression. Yeast one-hybrid and dual-luciferase assays were employed to determine the underlying regulatory mechanisms of BvCGT1 in withstanding UV-B stress. These results indicate a potential regulatory role of BvDof8 and BvDof13 in modulating flavonoid C-glycosides content, through their influence on BvCGT1. In conclusion, we have effectively demonstrated the regulation of BvCGT1 by BvDof8 and BvDof13, highlighting their crucial role in plant adaptation to UV-B radiation. Additionally, we have outlined a comprehensive transcriptional regulatory network involving BvDof8 and BvDof13 in response to UV-B radiation.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39152806

RESUMEN

Background Generalised lichen planus (GLP) is a chronic disease with an overall prevalence of 1% requiring longer treatment. Limited studies are available on GLP and its treatment in the literature, unlike oral lichen planus. Objective To determine the best steroid-sparing treatment modality for GLP by comparing the efficacy, response, safety, side effects, and remission with azathioprine, dapsone, and narrowband UV-B (NB-UVB) along with their impact on itching severity and life quality. Methodology Open-label, prospective, comparative, interventional study on generalised lichen planus patients treated with systemic steroids along with one of three steroid-sparing modalities. Totally 90 patients were studied including 30 patients each who received azathioprine (Group A), dapsone (Group B), and narrow band UVB (NB-UVB) (Group C), respectively, for 16 weeks. Itch severity index (ISI) and Dermatology life quality Index (DLQI) were assessed at baseline and week 24. All patients received oral prednisolone until there was no more active disease. Response was assessed in terms of occurrence of new lesions, flattening of lesions, post-inflammatory hyperpigmentation (PIH), and grading of lesions two weeks once for 6 months followed by six months of follow-up after treatment completion. Results Females outnumbered males in all 3 groups. Mean patient ages (34, 38, and 34) and the presence of one or more co-morbidities (50%, 42.3%, 37.5%) in Groups A, B, and C, respectively, were comparable. ISI and DLQI improvement at 24 weeks were greatest with NB-UVB, followed by azathioprine and dapsone in that order; the differences in improvement between groups showed high statistical significance. At week 24, occurrence of new lesions (0%, 0%, 3.8%), flattening (100% - all groups), PIH (100% - all groups), grade 3 lesions i.e. poor response, resolution of 20-50% of lesions (7.1%, 11.5%, 0%), grade 2 lesions i.e. partial response, resolution of 50-90% of lesions (35.7%, 76.9%, 8.3%) and grade 1 lesions i.e. complete response, resolution of >90% lesions (57.1%, 11.5%, 91.3%) were noted in Groups A, B and C, respectively; the differences in the extent of resolution of lesions between the groups were highly significant statistically. Remission was seen in 100%, 76.9%, and 87.5% in Groups A, B, and C, respectively, after six months. Limitations The sample size was small. Only 3 treatment options were compared in this study but many more options have been used for lichen planus. Long term follow-up is required. Conclusions NB-UVB with oral steroids showed a better response in terms of improvement in DLQI, ISI, disease control, and side effects than azathioprine and dapsone. Azathioprine showed a faster response and more prolonged remission. Dapsone showed poor response with multiple side effects.

7.
Foods ; 13(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39123575

RESUMEN

Isoflavones, a class of substances with high biological activity, are abundant in soybeans. This study investigated isoflavone biosynthesis in soybean cell suspension cultures under UV-B radiation. UV-B radiation enhanced the transcription level and activity of key enzymes involved in isoflavone synthesis in cell suspension cultures. As a result, the isoflavone contents significantly increased by 19.80% and 91.21% in hypocotyl and cotyledon suspension cultures compared with the control, respectively. Meanwhile, a significant difference was observed in the composition of isoflavones between soybean hypocotyl and cotyledon suspension cultures. Genistin was only detected in hypocotyl suspension cultures, whereas glycitin, daidzein, and genistein accumulated in cotyledon suspension cultures. Therefore, UV-B radiation exhibited tissue-specific regulation of isoflavone biosynthesis in soybean cell suspension cultures. The combination of suspension cultures and abiotic stress provides a novel technological approach to isoflavone accumulation.

8.
Plant J ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133822

RESUMEN

UV-B radiation can induce the accumulation of many secondary metabolites, including flavonoids, in plants to protect them from oxidative damage. BRI1-EMS-SUPPRESSOR1 (BES1) has been shown to mediate the biosynthesis of flavonoids in response to UV-B. However, the detailed mechanism by which it acts still needs to be further elucidated. Here, we revealed that UV-B significantly inhibited the transcription of multiple transcription factor genes in tobacco, including NtMYB27, which was subsequently shown to be a repressor of flavonoids synthesis in tobacco. We further demonstrated that NtBES1 directly binds to the E-box motifs present in the promoter of NtMYB27 to mediate its transcriptional repression upon UV-B exposure. The UV-B-repressed NtMYB27 could bind to the ACCT-containing element (ACE) in the promoters of Nt4CL and NtCHS and served as a modulator that promoted the biosynthesis of lignin and chlorogenic acid (CGA) but inhibited the accumulation of flavonoids in tobacco. The expression of NtMYB27 was also significantly repressed by heat stress, suggesting its putative roles in regulating heat-induced flavonoids accumulation. Taken together, our results revealed the role of NtBES1 and NtMYB27 in regulating the synthesis of flavonoids during the plant response to UV-B radiation in tobacco.

9.
Plants (Basel) ; 13(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39204669

RESUMEN

Increased UV-B radiation due to ozone depletion adversely affects plants. This study focused on the metabolite dynamics of Rhododendron chrysanthum Pall. (R. chrysanthum) and the role of ABA in mitigating UV-B stress. Chlorophyll fluorescence metrics indicated that both JA and ABA increased UV-B resistance; however, the effect of JA was not as strong as that of ABA. Metabolomic analysis using UPLC-MS/MS (ultra-performance liquid chromatography and tandem mass spectrometry) revealed significant fluctuations in metabolites under UV-B and ABA application. UV-B decreased amino acids and increased phenolics, suggesting antioxidant defense activation. ABA treatment upregulated lipids and phenolic acids, highlighting its protective role. Multivariate analysis showed distinct metabolic clusters and pathways responding to UV-B and ABA, which impacted amino acid metabolism and hormone signal transduction. Exogenous ABA negatively regulated the JA signaling pathway in UV-B-exposed R. chrysanthum, as shown by KEGG enrichment. This study deepens understanding of plant stress-tolerance mechanisms and has implications for enhancing plant stress tolerance through metabolic and hormonal interventions.

10.
Genome Biol ; 25(1): 234, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210441

RESUMEN

BACKGROUND: UV-B, an important environmental factor, has been shown to affect the yield and quality of rice (Oryza sativa) worldwide. However, the molecular mechanisms underlying the response to UV-B stress remain elusive in rice. RESULTS: We perform comprehensive metabolic profiling of leaves from 160 diverse rice accessions under UV-B and normal light conditions using a widely targeted metabolomics approach. Our results reveal substantial differences in metabolite accumulation between the two major rice subspecies indica and japonica, especially after UV-B treatment, implying the possible role and mechanism of metabolome changes in subspecies differentiation and the stress response. We next conduct a transcriptome analysis from four representative rice varieties under UV-B stress, revealing genes from amino acid and flavonoid pathways involved in the UV-B response. We further perform a metabolite-based genome-wide association study (mGWAS), which reveals 3307 distinct loci under UV-B stress. Identification and functional validation of candidate genes show that OsMYB44 regulates tryptamine accumulation to mediate UV-B tolerance, while OsUVR8 interacts with OsMYB110 to promote flavonoid accumulation and UV-B tolerance in a coordinated manner. Additionally, haplotype analysis suggests that natural variation of OsUVR8groupA contributes to UV-B resistance in rice. CONCLUSIONS: Our study reveals the complex biochemical and genetic foundations that govern the metabolite dynamics underlying the response, tolerance, and adaptive strategies of rice to UV-B stress. These findings provide new insights into the biochemical and genetic basis of the metabolome underlying the crop response, tolerance, and adaptation to UV-B stress.


Asunto(s)
Oryza , Rayos Ultravioleta , Oryza/genética , Oryza/metabolismo , Oryza/efectos de la radiación , Metaboloma , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Flavonoides/metabolismo , Metabolómica , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Transcriptoma
11.
Front Plant Sci ; 15: 1399840, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957604

RESUMEN

The genetic basis of plant response to light and heat stresses had been unveiled, and different molecular mechanisms of leaf cell homeostasis to keep high physiological performances were recognized in grapevine varieties. However, the ability to develop heat stress tolerance strategies must be further elucidated since the morpho-anatomical and physiological traits involved may vary with genotype × environment combination, stress intensity, and duration. A 3-year experiment was conducted on potted plants of Sardinian red grapevine cultivars Cannonau (syn. Grenache) and Carignano (syn. Carignan), exposed to prolonged heat stress inside a UV-blocking greenhouse, either submitted to low daily UV-B doses of 4.63 kJ m-2 d-1 (+UV) or to 0 kJ m-2 d-1 (-UV), and compared to a control (C) exposed to solar radiation (4.05 kJ m-2 d-1 average UV-B dose). Irrigation was supplied to avoid water stress, and canopy light and thermal microclimate were monitored continuously. Heat stress exceeded one-third of the duration inside the greenhouse and 6% in C. In vivo spectroscopy, including leaf reflectance and fluorescence, allowed for characterizing different patterns of leaf traits and metabolites involved in oxidative stress protection. Cannonau showed lower stomatal conductance under C (200 mmol m-2 s-1) but more than twice the values inside the greenhouse (400 to 900 mmol m-2 s-1), where water use efficiency was reduced similarly in both varieties. Under severe heat stress and -UV, Cannonau showed a sharper decrease in primary photochemical activity and higher leaf pigment reflectance indexes and leaf mass area. UV-B increased the leaf pigments, especially in Carignano, and different leaf cell regulatory traits to prevent oxidative damage were observed in leaf cross-sections. Heat stress induced chloroplast swelling, plastoglobule diffusion, and the accumulation of secretion deposits in both varieties, aggravated in Cannonau -UV by cell vacuolation, membrane dilation, and diffused leaf blade spot swelling. Conversely, in Carignano UV-B, cell wall barriers and calcium oxalate crystals proliferated in mesophyll cells. These responses suggest an adaptive divergence among cultivars to prolonged heat stress and UV-B light. Further research on grapevine biodiversity, heat, and UV-B light interactions may give new insights on the extent of stress tolerance to improve viticulture adaptive strategies in climate change hotspots.

12.
Environ Sci Pollut Res Int ; 31(34): 46979-46993, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38985420

RESUMEN

Skin homeostasis is predominantly compromised by exposure to UV-B irradiation, leading to several physiopathological processes at cellular and tissue levels that deteriorate skin function and integrity. The current study investigated the photo-protective role of seabuckthorn fruit pulp (SBT) extract against UV-B-induced damage in primary human skin fibroblasts (HDFs) and Balb/C mice skin. We subjected HDFs and Balb/C mice to UV-B irradiation and measured multiple cellular damage indicators. We found that UV-B-irradiated HDFs treated with SBT had a considerably greater survival rate than cells exposed to UV-B radiation alone. The UV-B irradiation-induced ROS generation led to the degradation of the extracellular matrix, inflammation, DNA damage, endoplasmic reticulum (ER) stress, and apoptosis. SBT treatment significantly reduced these manifestations. Topical application of SBT alleviated UV-B-induced epidermal thickening, leukocyte infiltration, and degradation of extracellular matrix in Balb/c mice skin. Based on our results, we conclude that SBT has the potential to be developed as a therapeutic/cosmetic remedy for the prevention of skin photo-damage.


Asunto(s)
Daño del ADN , Estrés del Retículo Endoplásmico , Fibroblastos , Hippophae , Ratones Endogámicos BALB C , Estrés Oxidativo , Extractos Vegetales , Piel , Rayos Ultravioleta , Animales , Ratones , Hippophae/química , Fibroblastos/efectos de los fármacos , Humanos , Extractos Vegetales/farmacología , Piel/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos
13.
Heliyon ; 10(13): e34189, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39071576

RESUMEN

Flavonoids mostly protect plant cells from the harmful effects of UV-B radiation from the sun. In plants, the R2R3-subfamily of the MYB transcription factor, MYB12, is a key inducer of the biosynthesis of flavonoids. Our study involves the biophysical characterization of Arabidopsis thaliana MYB12 protein (AtMYB12) under UV-B exposure in vitro. Tryptophan fluorescence studies using recombinant full-length AtMYB12 (native) and the N-terminal truncated versions (first N-terminal MYB domain absent in AtMYB12Δ1, and both the first and second N-terminal MYB domains absent in AtMYB12Δ2) have revealed prominent alteration in the tryptophan microenvironment in AtMYB12Δ1 and AtMYB12Δ2 protein as a result of UV-B exposure as compared with the native AtMYB12. Bis-ANS binding assay and urea-mediated denaturation profiling showed an appreciable change in the structural conformation in AtMYB12Δ1 and AtMYB12Δ2 proteins as compared with the native AtMYB12 protein following UV-B irradiation. UV-B-treated AtMYB12Δ2 showed a higher predisposition of aggregate formation in vitro. CD spectral analyses revealed a decrease in α-helix percentage with a concomitant increase in random coiled structure formation in AtMYB12Δ1 and AtMYB12Δ2 as compared to native AtMYB12 following UV-B treatment. Overall, these findings highlight the critical function of the N-terminal MYB domains in maintaining the stability and structural conformation of the AtMYB12 protein under UV-B stress in vitro.

14.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063093

RESUMEN

Higher plants have developed complex mechanisms to adapt to fluctuating environmental conditions with light playing a vital role in photosynthesis and influencing various developmental processes, including photomorphogenesis. Exposure to ultraviolet (UV) radiation can cause cellular damage, necessitating effective DNA repair mechanisms. Histone acetyltransferases (HATs) play a crucial role in regulating chromatin structure and gene expression, thereby contributing to the repair mechanisms. HATs facilitate chromatin relaxation, enabling transcriptional activation necessary for plant development and stress responses. The intricate relationship between HATs, light signaling pathways and chromatin dynamics has been increasingly understood, providing valuable insights into plant adaptability. This review explores the role of HATs in plant photomorphogenesis, chromatin remodeling and gene regulation, highlighting the importance of chromatin modifications in plant responses to light and various stressors. It emphasizes the need for further research on individual HAT family members and their interactions with other epigenetic factors. Advanced genomic approaches and genome-editing technologies offer promising avenues for enhancing crop resilience and productivity through targeted manipulation of HAT activities. Understanding these mechanisms is essential for developing strategies to improve plant growth and stress tolerance, contributing to sustainable agriculture in the face of a changing climate.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Histona Acetiltransferasas , Desarrollo de la Planta , Rayos Ultravioleta , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Desarrollo de la Planta/genética , Desarrollo de la Planta/efectos de la radiación , Plantas/genética , Plantas/efectos de la radiación , Plantas/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Cromatina/genética , Morfogénesis/efectos de la radiación , Morfogénesis/genética
15.
Plants (Basel) ; 13(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999560

RESUMEN

Epimedium brevicornu Maxim. is a herbal plant with various therapeutic effects, and its aboveground tissues contain flavonol compounds such as icaritin that can be used to produce new drugs for the treatment of advanced liver cancer. Previous studies have shown that ultraviolet-B (UV-B, 280-315 nm) stress can increase the levels of flavonoid substances in plants. In the current study, we observed the microstructure of E. brevicornu leaves after 0, 5, 10, 15, and 20 d of UV-B radiation (60 µw·cm-2) and quality formation mechanism of E. brevicornu leaves after 0, 10, and 20 d of UV-B radiation by LC‒ESI‒MS/MS. The contents of flavonols such as icariside I, wushanicaritin, icaritin, and kumatakenin were significantly upregulated after 10 d of radiation. The results indicated that UV-B radiation for 10 d inhibited the morphological development of E. brevicornu but increased the content of active medicinal components, providing a positive strategy for epimedium quality improvement.

16.
Plants (Basel) ; 13(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38999586

RESUMEN

In plants, secondary metabolites change in response to environmental conditions. These changes co-regulate resilience to stressful environmental conditions, plant growth and development, and interactions between plants and the wider ecosystem, while also affecting soil carbon storage and atmospheric and climatic conditions. The objective of this study was to determine the association between UV exposure and the contents of key metabolites, including amino acids, phenolics, flavonoids, terpenoids, carotenoids, tocopherols, and phytosterols. Mentha spicata plantlets were grown in tissue culture boxes for 30 days and then exposed to a low dose of broadband UV-B (291-315 nm; 2.8 kJm-2 biologically effective UV) enriched light for eight days. Metabolite contents were quantified either immediately after the final UV exposure, or after seven days of recovery under photosynthetically active radiation. It was found that UV promoted the production of flavonoids (1.8-fold) ahead of phenolic acids (unchanged). Furthermore, the majority of monoterpenes and sesquiterpenes, constituents of valuable mint essential oil, were significantly increased through UV treatment (up to 90-fold for α-linalool). In contrast, the contents of carotenoids and tocopherols did not increase following UV exposure. A comparison between plants sampled immediately after UV exposure and after seven days of recovery showed that there was an overall increase in the content of carotenoids, mono- and sesquiterpenes, phenolics, and amino acids following recovery, while the contents of sterols and tocopherols decreased. These UV-induced changes in metabolite profile may have important consequences for agriculture, ecology, and even the global climate, and they also provide an exciting opportunity to enhance crop value, facilitating the development of improved products with higher levels of essential oils and added benefits of enhanced flavour, colour, and bioactive content.

17.
Plants (Basel) ; 13(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38999696

RESUMEN

UV-B stress can affect plant growth at different levels, and although there is a multitude of evidence confirming the effects of UV-B radiation on plant photosynthesis, there are fewer studies using physiological assays in combination with multi-omics to investigate photosynthesis in alpine plants under stressful environments. Golden 2-like (G2-like/GLK) transcription factors (TFs) are highly conserved during evolution and may be associated with abiotic stress. In this paper, we used Handy-PEA and Imaging-PAM Maxi to detect chlorophyll fluorescence in leaves of Rhododendron chrysanthum Pall. (R. chrysanthum) after UV-B stress, and we also investigated the effect of abscisic acid (ABA) on photosynthesis in plants under stress environments. We used a combination of proteomics, widely targeted metabolomics, and transcriptomics to study the changes of photosynthesis-related substances after UV-B stress. The results showed that UV-B stress was able to impair the donor side of photosystem II (PSII), inhibit electron transfer and weaken photosynthesis, and abscisic acid was able to alleviate the damage caused by UV-B stress to the photosynthetic apparatus. Significant changes in G2-like transcription factors occurred in R. chrysanthum after UV-B stress, and differentially expressed genes localized in the Calvin cycle were strongly correlated with members of the G2-like TF family. Multi-omics assays and physiological measurements together revealed that G2-like TFs can influence photosynthesis in R. chrysanthum under UV-B stress by regulating the Calvin cycle. This paper provides insights into the study of photosynthesis in plants under stress, and is conducive to the adoption of measures to improve photosynthesis in plants under stress to increase yield.

18.
Plants (Basel) ; 13(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38999705

RESUMEN

Bell pepper plants are sensitive to environmental changes and are significantly affected by abiotic factors such as UV-B radiation and cold, which reduce their yield and production. Various approaches, including omics data integration, have been employed to understand the mechanisms by which this crop copes with abiotic stress. This study aimed to find metabolic changes in bell pepper stems caused by UV-B radiation and cold by integrating omic data. Proteome and metabolome profiles were generated using liquid chromatography coupled with mass spectrometry, and data integration was performed in the plant metabolic pathway database. The combined stress of UV-B and cold induced the accumulation of proteins related to photosynthesis, mitochondrial electron transport, and a response to a stimulus. Further, the production of flavonoids and their glycosides, as well as affecting carbon metabolism, tetrapyrrole, and scopolamine pathways, were identified. We have made the first metabolic regulatory network map showing how bell pepper stems respond to cold and UV-B stress. We did this by looking at changes in proteins and metabolites that help with respiration, photosynthesis, and the buildup of photoprotective and antioxidant compounds.

19.
Int J Mol Sci ; 25(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38928114

RESUMEN

UV-B is an important environmental factor that differentially affects plant growth and secondary metabolites. The effects of supplemental ultraviolet-B (sUV-B) exposure (T1, 1.40 kJ·m-2·day-1; T2, 2.81 kJ·m-2·day-1; and T3, 5.62 kJ·m-2·day-1) on the growth biomass, physiological characteristics, and secondary metabolites were studied. Our results indicated that leaf thickness was significantly (p < 0.05) reduced under T3 relative to the control (natural light exposure, CK); The contents of 6-BA and IAA were significantly reduced (p < 0.05); and the contents of ABA, 10-deacetylbaccatin III, and baccatin III were significantly (p < 0.05) increased under T1 and T2. The paclitaxel content was the highest (0.036 ± 0.0018 mg·g-1) under T3. The cephalomannine content was significantly increased under T1. Hmgr gene expression was upregulated under T1 and T3. The gene expressions of Bapt and Dbtnbt were significantly (p < 0.05) upregulated under sUV-B exposure, and the gene expressions of CoA, Ts, and Dbat were significantly (p < 0.05) downregulated. A correlation analysis showed that the 6-BA content had a significantly (p < 0.05) positive correlation with Dbat gene expression. The IAA content had a significantly (p < 0.05) positive correlation with the gene expression of Hmgr, CoA, Ts, and Dbtnbt. The ABA content had a significantly (p < 0.05) positive correlation with Bapt gene expression. Dbat gene expression had a significantly (p < 0.05) positive correlation with the 10-deacetylbaccatin content. Hmgr gene expression was positively correlated with the contents of baccatin III and cephalomannine. Bapt gene expression had a significantly (p < 0.01) positive correlation with the paclitaxel content. A factor analysis showed that the accumulation of paclitaxel content was promoted under T2, which was helpful in clarifying the accumulation of taxane compounds after sUV-B exposure.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Taxoides , Taxus , Rayos Ultravioleta , Taxus/metabolismo , Taxus/genética , Taxoides/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Paclitaxel , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hidrocarburos Aromáticos con Puentes/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Ácido Abscísico/metabolismo , Alcaloides
20.
Plants (Basel) ; 13(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38891343

RESUMEN

While it is well known that plants interpret UV-B as an environmental cue and a potential stressor influencing their growth and development, the specific effects of UV-B-induced oxidative stress on the dynamics of membrane lipids and proteins remain underexplored. Here, we demonstrate that UV-B exposure notably increases the formation of ordered lipid domains on the plasma membrane (PM) and significantly alters the behavior of the Glycine max nodule autoregulation receptor kinase (GmNARK) protein in Arabidopsis leaves. The GmNARK protein was located on the PM and accumulated as small particles in the cytoplasm. We found that UV-B irradiation interrupted the lateral diffusion of GmNARK proteins on the PM. Furthermore, UV-B light decreases the efficiency of surface molecule internalization by clathrin-mediated endocytosis (CME). In brief, UV-B irradiation increased the proportion of the ordered lipid phase and disrupted clathrin-dependent endocytosis; thus, the endocytic trafficking and lateral mobility of GmNARK protein on the plasma membrane are crucial for nodule formation tuning. Our results revealed a novel role of low-intensity UV-B stress in altering the organization of the plasma membrane and the dynamics of membrane-associated proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA