Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39275025

RESUMEN

This work investigated the substitution of the aldehyde with a pyran functional group in D-π-aldehyde dye to improve cell performance. This strategy was suggested by recent work that synthesized D-π-aldehyde dye, which achieved a maximum absorption wavelength that was only slightly off the threshold for an ideal sensitizer. Therefore, DFT and TD-DFT were used to investigate the effect of different pyran substituents to replace the aldehyde group. The pyran groups reduced the dye energy gap better than other known anchoring groups. The proposed dyes showed facile intermolecular charge transfer through the localization of HOMO and LUMO orbitals on the donor and acceptor parts, which promoted orbital overlap with the TiO2 surface. The studied dyes have HOMO and LOMO energy levels that could regenerate electrons from redox potential electrodes and inject electrons into the TiO2 conduction band. The lone pairs of oxygen atoms in pyran components act as nucleophile centers, facilitating adsorption on the TiO2 surface through their electrophile atoms. Pyrans increased the efficacy of dye sensitizers by extending their absorbance range and causing the maximum peak to redshift deeper into the visible region. The effects of the pyran groups on photovoltaic properties such as light harvesting efficiency (LHE), free energy change of electron injection, and dye regeneration were investigated and discussed. The adsorption behaviors of the proposed dyes on the TiO2 (1 1 0) surface were investigated by means of Monte Carlo simulations. The calculated adsorption energies indicates that pyran fragments, compared to the aldehyde in the main dye, had a greater ability to induce the adsorption onto the TiO2 substrate.

2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000245

RESUMEN

A major challenge in improving the overall efficiency of dye-sensitized solar cells is improving the optoelectronic properties of small molecule acceptors. This work primarily investigated the effects of conjugation in nitriles incorporated as acceptor moieties into a newly designed series of D-A-A dyes. Density functional theory was employed to specifically study how single-double and single-triple conjugation in nitriles alters the optical and electronic properties of these dyes. The Cy-4c dye with a highly conjugated nitrile unit attained the smallest band gap (1.80 eV), even smaller than that of the strong cyanacrylic anchor group (2.07 eV). The dyes lacking conjugation in nitrile groups did not contribute to the LUMO, while LUMOs extended from donors to conjugated nitrile components, facilitating intramolecular charge transfer and causing a strong bind to the film surface. Density of state analysis revealed a considerable impact of conjugated nitrile on the electronic properties of dyes through an effective contribution in the LUMO, exceeding the role of the well-known strong 2,1,3-benzothiadiazole acceptor unit. The excited state properties and the absorption spectra were investigated using time-dependent density functional theory (TD-DFT). Conjugation in the nitrile unit caused the absorption band to broaden, strengthen, and shift toward the near-infrared region. The proposed dyes also showed optimum photovoltaic properties; all dyes possess high light-harvesting efficiency (LHE) values, specifically 96% for the dyes Cy-3b and Cy-4c, which had the most conjugated nitrile moieties. The dyes with higher degrees of conjugation had longer excitation lifetime values, which promote charge transfer by causing steady charge recombination at the interface. These findings may provide new insights into the structure of conjugated nitriles and their function as acceptor moieties in DSSCS, which may lead to the development of extremely effective photosensitizers for solar cells.


Asunto(s)
Colorantes , Teoría Funcional de la Densidad , Nitrilos , Energía Solar , Nitrilos/química , Colorantes/química , Estructura Molecular
3.
J Mol Model ; 29(12): 376, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966671

RESUMEN

CONTEXT: The structural, electronic, non-linear optical (NLO) and spectral properties of [Formula: see text] clusters with [Formula: see text] have been studied under the influence of an external electric field using density functional theory (DFT). The effect of variation in the Hf:Ti ratio on different properties of clusters is investigated. The motivation to study [Formula: see text] clusters lies in the fact that HfTiO thin films have wide applications in various optoelectronic and photovoltaic devices. So, it will be interesting to study the effect of electric field on [Formula: see text] clusters with the variation in the number of Hf, Ti and O atoms. It is observed that out of all the clusters, [Formula: see text] and [Formula: see text] are the most stable clusters with high values of binding energy and HOMO-LUMO gap. The application of an external electric field on these most stable clusters distorts their geometry and their HOMO-LUMO gap decreases, dipole moment and polarizability increases as the electric field is increased from 0 a.u. to 340 x[Formula: see text] a.u. The applied electric field increases the polar character of clusters due to electron cloud deformation and hence, increases the reactivity of the clusters, thus making these clusters suitable for electrocatalytic reactions. The electric field controlled high values of dielectric constant makes these clusters suitable to be used in the oxide layer of metal oxide semiconductor field effect transistors (MOSFETs) with better capacitance. Under the effect of an electric field, the absorption peaks of UV-VIS spectra gets red-shifted. Due to the tuning of absorption spectra from ultraviolet to visible region, [Formula: see text] clusters can be thought of as a good replacement for [Formula: see text] in dye-sensitized solar cells (DSSCs). METHODS: The computational study of [Formula: see text] clusters has been performed using DFT. For the ground state of [Formula: see text] clusters, the optimization and frequency calculations have been performed using hybrid B3LYP (Becke three-parameter exchange functional combined with Lee, Yang and Parr correlation functional) functional with LANL2DZ (Los Alamos National Laboratory effective core potentials with Double Zeta atomic set) basis set under hybrid-GGA (generalized gradient approximation). Optimization and frequency calculations have been performed in each case. The excited state calculations have been carried out within time-dependent DFT formalism for a total of 50 excited states. The computational chemistry software package Gaussian 16 along with its graphical interface Gaussview have been employed for the current study of [Formula: see text] clusters.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122935, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37269651

RESUMEN

Over the past few years, the strategy of asymmetric modification has become popular for designing new photovoltaic materials because it can effectively improve optoelectronic performance and morphology, therefore power conversion efficiency (PCE). However, how the halogenations (to further change asymmetry) of terminal groups (TGs) of an asymmetric small-molecule non-fullerene acceptor (Asy-SM-NFA) influence optoelectronic properties is still not very clear. In this work, we have selected a promising Asy-SM-NFA IDTBF (the OSC based on it has a PCE of 10.43 %), exacerbated the asymmetry through fluorinations of TGs, and finally designed six new molecules. Based on density functional theory (DFT) and time-dependent DFT calculations, we systematically examine how the changed asymmetry impacts the optoelectronic properties. We find that the halogenations of TGs may significantly affect the molecular planarity, dipole moment, electrostatic potential, exciton binding energy, energy loss, and absorption spectrum. And the results show that newly designed BR-F1 and IM-mF (m = 1,3, and 4) are potential Asy-SM-NFAs because they all have enhanced absorption spectra in the visible region. Therefore, we provide a meaningful direction for the design of asymmetric NFA.


Asunto(s)
Halogenación , Teoría Funcional de la Densidad , Electricidad Estática
5.
Polymers (Basel) ; 15(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37242885

RESUMEN

In the present research, groups of nanolayered structures and nanohybrids based on organic green dyes and inorganic species are designated to act as fillers for PVA to induce new optical sites and increase its thermal stability through producing polymeric nanocomposites. In this trend, different percentages of naphthol green B were intercalated as pillars inside the Zn-Al nanolayered structures to form green organic-inorganic nanohybrids. The two-dimensional green nanohybrids were identified by X-ray diffraction, TEM and SEM. According to the thermal analyses, the nanohybrid, which has the highest amount of green dyes, was used for modifying the PVA through two series. In the first series, three nanocomposites were prepared depending on the green nanohybrid as prepared. In the second series, the yellow nanohybrid, which was produced from the green nanohybrid by thermal treatment, was used to produce another three nanocomposites. The optical properties revealed that the polymeric nanocomposites depending on green nanohybrids became optical-active in UV and visible regions because the energy band gap decreased to 2.2 eV. In addition, the energy band gap of the nanocomposites which depended on yellow nanohybrids was 2.5 eV. The thermal analyses indicated that the polymeric nanocomposites are thermally more stable than that of the original PVA. Finally, the dual functionality of organic-inorganic nanohybrids that were produced from the confinement of organic dyes and the thermal stability of inorganic species converted the non-optical PVA to optical-active polymer in a wide range with high thermal stability.

6.
Water Res ; 232: 119644, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36736245

RESUMEN

Dissolved organic matter (DOM) is an essential component of environmental systems. It usually originates from two end-members, including allochthonous and autochthonous sources. Previously, links have been established between DOM origins/sources and its biogeochemical reactivities. However, the influence of changes in DOM characteristics driven by end-member mixing on DOM biogeochemical reactivities has not been clarified. In this study, we investigated variations of DOM reactivities responding to the dynamics of DOM characteristics induced by different mixing ratios of two DOM end-members derived from humic acid (HA) and algae, respectively. Four biogeochemical reactivities of DOM were evaluated, including biodegradation, ·OH production, photodegradation, and redox capacity. Results showed that the variations of DOM characteristics due to the two end-members mixing significantly impact its biogeochemical reactivities. However, not all spectral parameters and reactivities followed the conservative mixing behavior. In contrast to reactivities of ·OH production and redox capacity, mixed samples showed apparent deviations from conservative linear relationships in biodegradation and photodegradation due to the interaction between the two end-members. Regarding the role of DOM properties influencing reactivity changes, peak A and M were recognized as the most stable parameters. However, peak C and SUVA254 were identified as the most vital contributors for explaining DOM reactivity variations. These findings suggest that a general model for describing the dynamic relationship between DOM source and reactivity cannot be proposed. Thus, the dynamics of DOM reactivity in diverse ecosystems cannot be estimated simply by the "plus or minus" of the reactivity from individual end-member. The effect of end-member mixing should be evaluated in a given reactivity instead of generalization. This study provides important insights for further understanding the dynamics of DOM's environmental role in different ecosystems influenced by variations of source inputs. In future, more field investigations are needed to further verify our findings in this study, especially in the scenario of end-member mixing.


Asunto(s)
Materia Orgánica Disuelta , Compuestos Orgánicos , Compuestos Orgánicos/química , Ecosistema , Sustancias Húmicas/análisis , Fotólisis , Espectrometría de Fluorescencia
7.
Adv Sci (Weinh) ; 10(9): e2206899, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36698290

RESUMEN

In this work, a novel discovery that the coinage-metal near-plane superatoms (CM-NPSs) formed by embedding actinide elements into the coinage metal rings can realize the "Z"-type tilted quasi-one-dimensional (1D) direct assembly is reported. This success can be attributed to the strong bonding between the overlapping parts of adjacent superatomic motifs. First-principles calculations reveal that the motifs maintain their geometric and electronic structures robustly during the assembly process. With the accumulation of motifs, the intensity of the absorption peak increases continuously in the ultraviolet-visible (UV-Vis) absorption spectra range of 300-450 nm, resulting in the hyperchromic effect, which is closely related to the degree of the participation of Th atoms. Furthermore, the absorption spectra show a continuously tunable feature in the 450-900 nm range, as the interlayer stacking pattern leads to a pronounced redshift. More importantly, the valence 5f-shells of Th atoms have an increased contribution to the final orbitals of electronic transition, which demonstrates the advantages of the active high angular momentum electrons of actinide elements in spectral properties. These findings provide a valuable reference for the direct artificial assembly of near-plane superatoms and optical properties of superatomic assemblies embedded with rare elements.

8.
Mar Drugs ; 20(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36355010

RESUMEN

Phlorotannins play a role in biological functions to protect the cells against UV and oxidative damage in brown algae. We hypothesized that these compounds can function as photo-protectors and antioxidants in skin care formulations. Two types of extracts (water (FV-WE) and 67% v/v ethanol (FV-EE)) from Fucus vesiculosus were obtained with a phlorotannin content between 7-14% in dry extract. Exposure to sun light during growth was included as a factor on the phlorotannin content but did not influence the phlorotannin content. However, green colored F. vesiculosus had lower total phenolic content (TPC) (FV-WE = 6.9 g GAE 100 g-1 dw, FV-EE = 7.8 g GAE 100 g-1 dw) compared to those with a yellow/brownish color (FV-WE = 10.4-13.7 g GAE 100 g-1 dw, FV-EE = 11.2-14.0 g GAE 100 g-1 dw). UVA and UVB photo protective capabilities of the extracts through different biological effective protection factors (BEPFs) were evaluated using in vitro methods; the Mansur method for sun protection factor (SPF) and calculation of effective solar absorption radiation (%ESAR) to determine SPF and UVA protection factor (UVA-PF) of the extract and in seaweed enriched lotion. The SPF was negligible, when evaluating FV-WE in lotion (10 and 20% w/w). Moreover, %ESAR of the FV-WE showed SPF and some UVA-PF, but not enough to give sufficient SPF in lotions (10% w/w). It was concluded that the concentration of UV protecting compounds in the extracts was too low to and that further fractionation and purification of phlorotannins is needed to increase the SPF.


Asunto(s)
Cosmecéuticos , Fucus , Phaeophyceae , Antioxidantes/farmacología , Extractos Vegetales/farmacología
9.
Micromachines (Basel) ; 13(11)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36363951

RESUMEN

The electrolyte is one of the key components of dye-sensitized solar cells' (DSSC) structure. In this paper, the electrolyte formulation of a new DSSC with external photoanode structure was studied. Based on the idea that the electrolyte should match the light absorption and light path, iodine series electrolytes with different concentrations were configured and used in the experiment. The results showed that the external photoanode structure solar cells assembled with titanium electrode had the best photoelectric conversion ability when the concentration of I2 was 0.048 M. It achieved the open circuit voltage of 0.71 V, the short circuit current of 8.87 mA, and the filling factor of 57%.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 271: 120869, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35065519

RESUMEN

Dipicolinic acid (DPA) is an essential component for the protection of DNA in bacterial endospores and is often used as a biomarker for spore detection. Depending upon the pH of the solution, DPA exists in different ionic forms. Therefore, it is important to understand how these ionic forms influence spectroscopic response. In this work, we characterize Raman and absorption spectra of DPA in a pH range of 2.0-10.5. We show that the ring breathing mode Raman peak of DPA shifts from 1003 cm-1 to 1017 cm-1 and then to 1000 cm-1 as pH increases from 2 to 5. The relative peak intensities related to the different ionic forms of DPA are used to experimentally derive the pKa values (2.3 and 4.8). We observe using UV-vis spectroscopy that the changes in the absorption spectrum of DPA as a function of pH correlate with the changes observed in Raman spectroscopy, and the same pKa values are verified. Lastly, using fluorescence spectroscopy and exciting a DPA solution at between 210-330 nm, we observe a shift in fluorescence emission from 375 nm to 425 nm between pH 2 and pH 6 when exciting at 320 nm. Our work shows that the different spectral responses from the three ionic forms of DPA may have to be taken into account in, e.g., spectral analysis and for detection applications.


Asunto(s)
Ácidos Picolínicos , Esporas Bacterianas , Concentración de Iones de Hidrógeno , Ácidos Picolínicos/química , Espectrometría Raman/métodos , Esporas Bacterianas/química
11.
J Colloid Interface Sci ; 612: 737-759, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033919

RESUMEN

The very recent development of highly selective techniques making possible the synthesis and experimental characterization of subnanometric (subnanometer-sized) metal clusters (even single atoms) is pushing our understanding far beyond the present knowledge in materials science, driving these clusters as a new generation of quantum materials at the lower bounds of nanotechnology. When the size of the metal cluster is reduced to a small number of atoms, the d-band of the metal splits into a subnanometric d-type molecular orbitals network in which all metal atoms are inter-connected, with the inter-connections having the length of a chemical bond (1-2 Å). These molecular characteristics are at the very core of the high stability and novel properties of the smallest metal clusters, with their integration into colloidal materials interacting with the environment having the potential to further boost their performance in applications such as luminescence, sensing, bioimaging, theranostics, energy conversion, catalysis, and photocatalysis. Through the presentation of very recent case studies, this Feature Article is aimed to illustrate how first-principles modelling, including methods beyond the state-of-the-art and an interplay with cutting-edge experiments, is helping to understand the special properties of these clusters at the most fundamental level. Moreover, it will be discussed how superfluid helium droplets can act both as nano-reactors and carriers to achieve the synthesis and surface deposition of metal clusters. This concept will be illustrated with the quantum simulation of the helium droplet-assisted soft-landing of a single Au atom onto a titanium dioxide (TiO2) surface. Next, it will be shown how the application of first-principles methods have disclosed the fundamental reasons why subnanometric Cu5 clusters are resistant to irreversible oxidation, and capable of increasing and extending into the visible region the solar absorption of TiO2, of augmenting its efficiency for photo-catalysis beyond a factor of four, also considering the decomposition and photo-activation of CO2 as a prototypical (photo-) catalytic reaction. Finally, I will discuss how the modification of the same material with subnanometric Ag5 clusters has converted it into a "reporter" of a surface polaron property as well as a novel two-dimensional polaronic material.

12.
Appl Spectrosc ; 73(7): 810-815, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30700093

RESUMEN

The ultraviolet-visible (UV-Vis) spectra of the aqueous solutions of humic acids (HA) Aldrich were obtained within the concentration range 1-20 mg/L (0.1-2c10-6 mol/L). A conclusion on the existence of the self-association (dimer formation) of HA macromolecules is based on the deviation of the concentration dependence of optical density (OD) from the linear one at [HA] > 10 mg/L (>10-6 mol/L). An original, mathematical algorithm is proposed to determine a dimerization constant K and a molar coefficient of dimer absorption ∊ D(λ) The value of K was (2.56 ± 0.07) c 106 L/mol. The calculated molar coefficients of HA macromolecule dimer absorption, ∊ D(λ) , indicate an increase in the dimer extinction coefficient ∊ D(λ) compared to the double value of the molar monomer absorption 2 ∊ M(λ) . It was established that the spectral dependence of the value ß = ∊ D(λ) / ∊ M(λ) exhibits a minimum within a wavelength range of 300-450 nm, which is due to the difference in the efficiency of the interaction of various sites upon HA macromolecule dimerization. Thus, an approach of studying the processes of self-association is proposed using the method of UV-Vis absorption spectroscopy. This method is implemented for molecules that do not have characteristic absorption bands. The proposed method can also be successfully applied to molecules with characteristic absorption bands.

13.
J Mol Model ; 24(7): 170, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29934775

RESUMEN

Use and application of Schiff bases are extended to many different fields of technology. (ISE)M(CO)5 complex [M = Cr (1), Mo (2), W (3), and where ISE is 3[4-ethyl(phenly)imino][indoline-2-one]; and (ISB)M(CO)5 [M = Cr (4), Mo (5), W (6)], where ISB is 3[4-butly(phenly)imino][indoline-2-one] were investigated by computational methods. Computations were carried out using density functional theory (DFT) with B3LYP and CAM-B3LYP functionals, in conjunction with LanL2DZ basis set for metals and cc-PVTZ basis set for other atoms. Time-dependent density functional theory (TDDFT) was used at the same level to obtain the electronic transitions. Molecular orbital energies, UV-Vis spectra, and total electron densities of investigated molecules were shown in the gas phase and in THF. Metal complexes showed higher absorption coefficients compared to ISE and ISB in the visible region. Additionally, they displayed absorption peaks at longer wavelengths and full MLCT character in solution, and W complexes required less energy compared to the complexes of other investigated metal ions. Among the investigated systems, (ISE)W(CO)5 and (ISB)W(CO)5 complexes with lowest HOMO-LUMO gaps are found to be the best candidates for photosensitive material production. Graphical Abstract UV-Vis absorption spectra of ISE and (ISE)W(CO)5.

14.
Mikrochim Acta ; 185(2): 88, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29594639

RESUMEN

The authors present a colorimetric method for the quantification of Ni(II) at nanomolar levels. It is based on the use of iodide-responsive copper-gold nanoparticles (Cu-Au NPs) combined with the Ni(II)-catalyzed glutathione (GSH)-oxygen reaction system. In the presence of Ni(II), the catalytic reaction between GSH and oxygen is can triggered. This leads to the formation of GSSG which is bulky and hinders the access of iodide to the surface of the Cu-Au NPs. Concomitantly, the color of the solution containing the Cu-Au NPs changes from gray to red. Based on these findings, a method was developed for the quantitation of Ni(II) that has a detection limit as low as 0.54 nM. This is 1-3 orders of magnitude lower than that of previously reported optical methods. The assay has excellent selectivity for Ni(II), is rapid, cost-effective, portable, and allows for bare eye observation. Conceivably the method is suitable for field detection of Ni(II) in biological, food, and environmental samples. Graphical Abstract A sensitive colorimetric strategy for Ni(II) through the combination of iodide-responsive Cu-Au NPs with Ni(II)-catalyzed the oxidation of GSH by oxygen was presented.

15.
Artículo en Inglés | MEDLINE | ID: mdl-28319795

RESUMEN

This paper studies donor-acceptor systems which incorporate benzodithiophene (BDT), benzodifuran (BDF) and benzodipyrrole (BDP) units as the electron-rich monomer with TT unit representing the electron-deficient monomer. This research is based on employing density functional theory (DFT) and time-dependent DFT (TD-DFT). The highest occupied molecular orbitals (HOMO) and the lowest unoccupied molecular orbitals (LUMO), HOMO-LUMO gaps and dihedral-angles of these copolymers were calculated using oligomer extrapolation technique and periodic boundary condition (PBC) method. The optical band gaps and UV-vis absorption spectra of aforementioned copolymers were obtained by TD-DFT at the same level of theory. Based on the fair agreement between PBC-DFT calculated results and experimental data, the substituent effects of Cl, Br, CCH, COH, NO2, OH, SH and NH2 groups were investigated by PBC-DFT method. The difference between the ground and excited-states dipole moment (Δµge) of all derivatives were also calculated. Taking these results into account, a better understanding of the substituent effects on the photo-physical properties of the copolymers under study was achieved. Due to the shift of HOMO and LUMO energy levels, smaller band gaps and higher Δµge are observed in some derivatives. The calculation results demonstrate that the substitution of COH and NO2 by fluorine in BDF-TT and BDP-TT leads to higher maximum theoretical efficiencies (η).

16.
J Mol Model ; 23(1): 17, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28035644

RESUMEN

Schiff bases have many chemical and biological applications in medicine and pharmaceuticals due to the presence of an imine group (-C=N-). These bases are used in many different fields of technology, and in photochemistry because of their photochromic properties. Here, the structural and electronic properties of the Schiff base formed by tacrine and saccharin (TacSac) were explored using density functional theory with the B3LYP, M06-2X, M06L, and ωB97XD functionals in combination with the 6-311++G(d,p) basis set. The time-dependent formalism was used at the B3LYP/6-311++G(d,p) level to obtain electronic transitions. The calculations were repeated in an implicit solvent model mimicking water, using the polarizable continuum model in conjunction with a solvation model based on a density approach. The results indicate that TacSac cannot form spontaneously, but can be obtained in mild reactions. However, the resulting Schiff base displays different characteristics to its monomers. It also has the potential for use in photochemical intramolecular charge-transfer systems. Graphical Abstract Intramolecular charge transfer between HOMO and LUMO of TacSac.

17.
Chemphyschem ; 18(4): 366-383, 2017 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-28019073

RESUMEN

A series of dyes, containing thiophene and thieno[3,2-b]thiophene as π-conjugated bridging units and six kinds of groups as electron acceptors, were designed for dye-sensitized solar cells (DSSCs). The ground- and excited-state properties of the designed dyes were investigated by using density functional theory (DFT) and time-dependent DFT, respectively. Moreover, the parameters affecting the short-circuit current density and open-circuit voltage were calculated to predict the photoelectrical performance of each dye. In addition, the charge difference density was presented through a three-dimensional (3D) real-space analysis method to investigate the electron-injection mechanism in the complexes. Our results show that the longer conjugated bridge would inhibit the intramolecular charge transfer, thereby affecting the photoelectrical properties of DSSCs. Similarly, owing to the lowest chemical hardness, largest electron-accepting ability, dipole moment (µnormal ) and the change in the energy of the TiO2 conduction band (ΔECB ), the dye with a (E)-3-(4-(benzo[c][1,2,5]thiadiazol-4-yl)phenyl)-2-cyanoacrylic acid (TCA) acceptor group would exhibit the most significant photoelectrical properties among the designed dyes.

18.
Acta Crystallogr C Struct Chem ; 72(Pt 10): 724-729, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27703118

RESUMEN

In coordination chemistry and crystal engineering, many factors influence the construction of coordination polymers and the final frameworks depend greatly on the organic ligands used. N-Donor ligands with diverse coordination modes and conformations have been employed to assemble metal-organic frameworks. Carboxylic acid ligands can deprotonate completely or partially when bonding to metal ions and can also act as donors or acceptors of hydrogen bonds and are thus good candidates for the construction of supramolecular architectures. Two new transition metal complexes, namely poly[diaqua(µ4-1,4-bis{[1-(pyridin-3-ylmethyl)-1H-benz[d]imidazol-2-yl]methoxy}benzene)bis(µ2-isophthalato)dicobalt(II)], [Co(C8H4O4)(C34H28N6O2)0.5(H2O)]n, (1), and poly[diaqua(µ4-1,4-bis{[1-(pyridin-3-ylmethyl)-1H-benz[d]imidazol-2-yl]methoxy}benzene)bis(µ2-isophthalato)dicadmium(II)], [Cd(C8H4O4)(C34H28N6O2)0.5(H2O)]n, have been constructed using a symmetric N-donor ligand and a carboxylate ligand under hydrothermal conditions. X-ray crystallographic studies reveal that complexes (1) and (2) are isostructural, both of them exhibiting three-dimensional supramolecular architectures built by hydrogen bonds in which the coordinated water molecules serve as donors, while the O atoms of the carboxylate groups act as acceptors. Furthermore, (1) and (2) have been characterized by elemental, IR spectroscopic, powder X-ray diffraction (PXRD) and thermogravimetric analyses. The UV-Vis absorption spectrum of complex (1) has also been investigated.

19.
J Mol Model ; 22(9): 209, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27535850

RESUMEN

We investigate the chemical reactivities, aromatic properties, and UV-Vis absorption spectra of four constitutional isomers of 1-butoxy-4-methoxybenzenepillar[5]arene with the DFT and TDDFT methods. These characteristics in the gas and solvent phases are discussed on the basis of electronic energy, the highest occupied molecular orbital energy, electrophilicity, global hardness, chemical potential, and nucleus-independent chemical shift. The out-of-plane component of the NICS values reveals that there is a great contrast between aromatic rings of the isomer and benzene. The most intense wavelengths of BMpillar[5]arenes are all made up of delocalized-delocalized π → π* transition.

20.
Artículo en Inglés | MEDLINE | ID: mdl-27258685

RESUMEN

A series of metal free Tetrathienoacene-based (TTA-based) organic dyes are designed and investigated as sensitizers for application in dye sensitized solar cells (DSSCs). Density function theory and time dependent density function theory calculations were performed on these dyes at vacuum and orthodichlorobenzene as the solvent. Effects of changing π-conjugation bridges and different functional groups in acceptor and donor units were investigated. UV-Vis absorption spectra were simulated to show the wavelength shifting and absorption properties. Inserting nitro and acyl chloride functional groups in acceptor and NH2 in donor units leads to the reduction of HOMO-LUMO gap by lowering the lowest unoccupied molecular orbital (LUMO) energy level and raising the highest occupied molecular orbital (HOMO) energy level and the increase in effective parameters in DSSC' efficiency. The results show that changing spacer units from thiophene to furan has a great effect on electronic structure and absorption spectra. Investigation of the electron distributions of frontier orbitals shows the HOMO and LUMO localization in donor and acceptor, respectively. Some key parameters that were studied here include light harvesting efficiency, free energy of electron injection and open circuit photo-voltage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA