Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38676153

RESUMEN

Many emerging applications, such as factory automation, electric power distribution, and intelligent transportation systems, require multicast Ultra-Reliable Low-Latency Communications (mURLLC). Since 3GPP Release 17, 5G systems natively support multicast functionality, including multicast Hybrid Automatic Repeat Request and various feedback schemes. Although these features can be promising for mURLLC, the specifications and existing studies fall short in offering guidance on their efficient usage. This paper presents the first comprehensive system-level evaluation of mURLLC, leveraging insights from 3GPP specifications. It points out (i) how mURLLC differs from traditional multicast broadband wireless communications, and (ii) which approaches to provide mURLLC require changing the paradigm compared with the existing solutions. Finally, the paper provides recommendations on how to satisfy strict mURLLC requirements efficiently, i.e., with low channel resource consumption, which increases the capacity of 5G systems for mURLLC. Simulation results show that proper configuration of multicast mechanisms and the corresponding algorithms for mURLLC traffic can reduce resource consumption up to three times compared to the baseline solutions proposed for broadband multicast traffic, which significantly increases the system capacity.

2.
Entropy (Basel) ; 26(2)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38392377

RESUMEN

Remote control over communication networks with bandwidth-constrained channels has attracted considerable recent attention because it holds the promise of enabling a large number of real-time applications, such as autonomous driving, smart grids, and the industrial internet of things (IIoT). However, due to the limited bandwidth, the sub-packets or even bits have to be transmitted successively, thereby experiencing non-negligible latency and inducing serious performance loss in remote control. To overcome this, we introduce an incremental coding method, in which the actuator acts in real time based on a partially received packet instead of waiting until the entire packet is decoded. On this basis, we applied incremental coding to a linear control system to obtain a remote-control scheme. Both its stability conditions and average linear-quadratic-Gaussian-(LQG) cost are presented. Then, we further investigated a multi-user remote-control method, with a particular focus on its applications in the demand response of smart grids over bandwidth-constrained communication networks. The utility loss due to the bandwidth constraint and communication latency are minimized by jointly optimizing the source coding and real-time demand response. The numerical results show that the incremental-coding-aided remote control performed well in both single-user and multi-user scenarios and outperformed the conventional zero-hold control scheme significantly under the LQG metric.

3.
Sensors (Basel) ; 23(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37837067

RESUMEN

One of the critical use cases for prospective fifth generation (5G) cellular systems is the delivery of the state of the remote systems to the control center. Such services are relevant for both massive machine-type communications (mMTC) and ultra-reliable low-latency communications (URLLC) services that need to be supported by 5G systems. The recently introduced the age of information (AoI) metric representing the timeliness of the reception of the update at the receiver is nowadays commonly utilized to quantify the performance of such services. However, the metric itself is closely related to the queueing theory, which conventionally requires strict assumptions for analytical tractability. This review paper aims to: (i) identify the gaps between technical wireless systems and queueing models utilized for analysis of the AoI metric; (ii) provide a detailed review of studies that have addressed the AoI metric; and (iii) establish future research challenges in this area. Our major outcome is that the models proposed to date for the AoI performance evaluation and optimization deviate drastically from the technical specifics of modern and future wireless cellular systems, including those proposed for URLLC and mMTC services. Specifically, we identify that the majority of the models considered to date: (i) do not account for service processes of wireless channel that utilize orthogonal frequency division multiple access (OFDMA) technology and are able to serve more than a single packet in a time slot; (ii) neglect the specifics of the multiple access schemes utilized for mMTC communications, specifically, multi-channel random access followed by data transmission; (iii) do not consider special and temporal correlation properties in the set of end systems that may arise naturally in state monitoring applications; and finally, (iv) only few studies have assessed those practical use cases where queuing may happen at more than a single node along the route. Each of these areas requires further advances for performance optimization and integration of modern and future wireless provisioning technologies with mMTC and URLLC services.

4.
Entropy (Basel) ; 25(9)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37761624

RESUMEN

This paper develops and optimizes a non-orthogonal and noncoherent multi-user massive single-input multiple-output (SIMO) framework, with the objective of enabling scalable ultra-reliable low-latency communications (sURLLC) in Beyond-5G (B5G)/6G wireless communication systems. In this framework, the huge diversity gain associated with the large-scale antenna array in the massive SIMO system is leveraged to ensure ultra-high reliability. To reduce the overhead and latency induced by the channel estimation process, we advocate for the noncoherent communication technique, which does not need the knowledge of instantaneous channel state information (CSI) but only relies on large-scale fading coefficients for message decoding. To boost the scalability of noncoherent massive SIMO systems, we enable the non-orthogonal channel access of multiple users by devising a new differential modulation scheme to ensure that each transmitted signal matrix can be uniquely determined in the noise-free case and be reliably estimated in noisy cases when the antenna array size is scaled up. The key idea is to make the transmitted signals from multiple geographically separated users be superimposed properly over the air, such that when the sum signal is correctly detected, the signal sent by each individual user can be uniquely determined. To further enhance the average error performance when the array antenna number is large, we propose a max-min Kullback-Leibler (KL) divergence-based design by jointly optimizing the transmitted powers of all users and the sub-constellation assignments among them. The simulation results show that the proposed design significantly outperforms the existing max-min Euclidean distance-based counterpart in terms of error performance. Moreover, our proposed approach also has a better error performance compared to the conventional coherent zero-forcing (ZF) receiver with orthogonal channel training, particularly for cell-edge users.

5.
Entropy (Basel) ; 25(6)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37372200

RESUMEN

The ultra-reliable and low-latency communication (URLLC) systems are expected to support the stringent quality of service (QoS) demands in the Internet of Things (IoT) networks. In order to support the strict latency and reliability constraints, it is preferable to deploy a reconfigurable intelligent surface (RIS) in the URLLC systems to improve the link quality. In this paper, we focus on the uplink of an RIS-assisted URLLC system, and we propose to minimize the transmission latency under the reliability constraints. To solve the non-convex problem, a low-complexity algorithm is proposed by using the Alternating Direction Method of Multipliers (ADMM) technique. The RIS phase shifts optimization, which is typically non-convex, is efficiently solved by formulating as a Quadratically Constrained Quadratic Programming (QCQP) problem. Simulation results verify that our proposed ADMM-based method is able to achieve better performance than the conventional semi-definite relaxation (SDR)-based method with lower computational complexity. Our proposed RIS-assisted URLLC system is able to significantly reduce the transmission latency, which highlights the great potential in deploying RIS in the IoT networks with strict reliability requirements.

6.
Sensors (Basel) ; 23(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37112226

RESUMEN

With the rapid development of the 5G power Internet of Things (IoT), new power systems have higher requirements for data transmission rates, latency, reliability, and energy efficiency. Specifically, the hybrid service of enhanced mobile broadband (eMBB) and ultra-reliable low-latency communication (URLLC) has brought new challenges to the differentiated service of the 5G power IoT. To solve the above problems, this paper first constructs a power IoT model based on NOMA for the mixed service of URLLC and eMBB. Considering the shortage of resource utilization in eMBB and URLLC hybrid power service scenarios, the problem of maximizing system throughput through joint channel selection and power allocation is proposed. The channel selection algorithm based on matching as well as the power allocation algorithm based on water injection are developed to tackle the problem. Both theoretical analysis and experimental simulation verify that our method has superior performance in system throughput and spectrum efficiency.

7.
Sensors (Basel) ; 22(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36298353

RESUMEN

With the advancement in next-generation communication technologies, the so-called Tactile Internet is getting more attention due to its smart applications, such as haptic-enabled teleoperation systems. The stringent requirements such as delay, jitter, and packet loss of these delay-sensitive and loss-intolerant applications make it more challenging to ensure the Quality of Service (QoS) and Quality of Experience (QoE). In this regard, different haptic codec and control schemes were proposed for QoS and QoE provisioning in the Tactile Internet. However, they maximize the QoE while degrading the system's stability under varying delays and high packet rates. In this paper, we present a reinforcement learning-based Intelligent Tactile Edge (ITE) framework to ensure both transparency and stability of teleoperation systems with high packet rates and variable time delay communication networks. The proposed ITE first estimates the network challenges, including communication delay, jitter, and packet loss, and then utilizes a Q-learning algorithm to select the optimal haptic codec scheme to reduce network load. The proposed framework aims to explore the optimal relationship between QoS and QoE parameters and make the tradeoff between stability and transparency during teleoperations. The simulation result indicates that the proposed strategy chooses the optimal scheme under different network impairments corresponding to the congestion level in the communication network while improving the QoS and maximizing the QoE. The end-to-end performance of throughput (1.5 Mbps) and average RTT (70 ms) during haptic communication is achieved with a learning rate and discounted factor value of 0.5 and 0.8, respectively. The results indicate that the communication system can successfully achieve the QoS and QoE requirements by employing the proposed ITE framework.


Asunto(s)
Algoritmos , Redes de Comunicación de Computadores , Simulación por Computador , Inteligencia
8.
Sensors (Basel) ; 22(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36236442

RESUMEN

Multiservice cellular in Radio Access Network (RAN) Slicing has recently attained huge interest in enhancing isolation and flexibility. However, RAN slicing in heterogeneous networks (HetNet) architecture is not adequately explored. This study proposes a pairing-network slicing (NS) approach for Multiservice RAN that cares about quality of service (QoS), baseband resources, capacities of wireless fronthaul and backhaul links, and isolation. This intriguing approach helps address the increased need for mobile network traffic produced by a range of devices with various QoS requirements, including improved dependability, ultra-reliability low-latency communications (uRLLC), and enhanced broadband Mobile Services (eMBB). Our study displays a unique RAN slicing framework for user equipment (UE) for joint user-association. Multicell non-orthogonal multiple access (NOMA)-based resource allocation across 5G HetNet under successive interference cancelation (SIC) is seen to achieve the best performance. Joint user-slice pairing and association are optimization problems to maximize eMBB UE data rates while fulfilling uRLLC latency and reliability criteria. This is accomplished by guaranteeing the inter- and intra-isolation property of slicing to eliminate interferences between eMBB and uRLLC slices. We presented the UE-slice association (U-S. A) algorithm as a one-to-many matching game to create a stable connection between UE and one of the base stations (BSs). Next, we use the UE-slice pairing (U-S. P) algorithm to find stable uRLLC-eMBB pairs that coexist on the same spectrum. Numerical findings and performance analyses of the submitted association and pairing technique show they can all be RAN slicing criteria. We prove that the proposed algorithm optimizes system throughput while decreasing uRLLC latency by associating and pairing every uRLLC user in mini slots.


Asunto(s)
Noma , Algoritmos , Comunicación , Redes de Comunicación de Computadores , Humanos , Reproducibilidad de los Resultados
9.
Sensors (Basel) ; 22(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35890956

RESUMEN

Sixth-generation (6G) wireless communication scenarios are complex and diverse. Small-scale fading is a key part of wireless channels and its impact on performance in scenarios with time sensitivity and 6G ultrareliable and low latency communications (URLLC) quality-of-service requirements cannot be ignored. Therefore, it is necessary to accurately characterize small-scale fading when designing wireless communication systems. In this paper, we derive approximate closed form expressions for the probability density function, cumulative distribution function and moment-generating function of the postprocessing signal-to-noise ratio following the zero-forcing detector in a cell-free massive multiple-input multiple-output (CF mMIMO) system. CF mMIMO system is a nonorthogonal multiple access (NOMA) system that enables users to share all channel uses and can ensure the fairness of the communication quality experienced by different users. Our key contributions include the extension of the κ-µ shadowed fading model to a CF mMIMO system and the proposal of theoretical tools (the derived closed-form expression) to improve its mathematical tractability. By exploiting the statistical characterizations of the arrival and service processes, another important contribution is the exploitation of the upper bound of the queuing delay violation probability (UB-QDVP) over the Mellin transforms of the arrival and service processes in the proposed CF mMIMO system under the κ-µ shadowed fading model. Corroborated by extensive simulations, our analyses validate that the CF mMIMO system outperforms the orthogonal multiple access and power-domain NOMA systems and reveal the relationships among different small-scale fading types, energy efficiency, delay and the UB-QDVP, as well as the accuracy and effectiveness of the proposed theoretical tools based on the κ-µ shadowed fading model.

10.
Entropy (Basel) ; 24(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35626522

RESUMEN

Fifth generation mobile communication systems (5G) have to accommodate both Ultra-Reliable Low-Latency Communication (URLLC) and enhanced Mobile Broadband (eMBB) services. While eMBB applications support high data rates, URLLC services aim at guaranteeing low-latencies and high-reliabilities. eMBB and URLLC services are scheduled on the same frequency band, where the different latency requirements of the communications render their coexistence challenging. In this survey, we review, from an information theoretic perspective, coding schemes that simultaneously accommodate URLLC and eMBB transmissions and show that they outperform traditional scheduling approaches. Various communication scenarios are considered, including point-to-point channels, broadcast channels, interference networks, cellular models, and cloud radio access networks (C-RANs). The main focus is on the set of rate pairs that can simultaneously be achieved for URLLC and eMBB messages, which captures well the tension between the two types of communications. We also discuss finite-blocklength results where the measure of interest is the set of error probability pairs that can simultaneously be achieved in the two communication regimes.

11.
Entropy (Basel) ; 24(5)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35626610

RESUMEN

The Ultra-Reliable Low-Latency Communication (URLLC) is expected to be an important feature of 5G and beyond networks. Supporting URLLC in a resource-efficient manner demands optimal Modulation and Coding Scheme (MCS) selection and spectrum allocation. This paper presents a study on MCS selection and spectrum allocation to support URLLC. The essential idea is to establish an analytical connection between the delay and reliability requirements of URLLC data transmission and the underlying MCS selection and spectrum allocation. In particular, the connection factors in fundamental aspects of wireless data communication include channel quality, coding and modulation, spectrum allocation and data traffic characteristics. With this connection, MCS selection and spectrum allocation can be efficiently performed based on the delay and reliability requirements of URLLC. Theoretical results in the scenario of a 5G New Radio system are presented, where the Signal-to-Noise Ratio (SNR) thresholds for adaptive MCS selection, data-transmission rate and delay, as well as spectrum allocation under different configurations, including data duplication, are discussed. Simulation results are also obtained and compared with the theoretical results, which validate the analysis and its efficiency.

12.
Sensors (Basel) ; 22(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408051

RESUMEN

The existing sub-6 GHz band is insufficient to support the bandwidth requirement of emerging data-rate-hungry applications and Internet of Things devices, requiring ultrareliable low latency communication (URLLC), thus making the migration to millimeter-wave (mmWave) bands inevitable. A notable disadvantage of a mmWave band is the significant losses suffered at higher frequencies that may not be overcome by novel optimization algorithms at the transmitter and receiver and thus result in a performance degradation. To address this, Intelligent Reflecting Surface (IRS) is a new technology capable of transforming the wireless channel from a highly probabilistic to a highly deterministic channel and as a result, overcome the significant losses experienced in the mmWave band. This paper aims to survey the design and applications of an IRS, a 2-dimensional (2D) passive metasurface with the ability to control the wireless propagation channel and thus achieve better spectral efficiency (SE) and energy efficiency (EE) to aid the fifth and beyond generation to deliver the required data rate to support current and emerging technologies. It is imperative that the future wireless technology evolves toward an intelligent software paradigm, and the IRS is expected to be a key enabler in achieving this task. This work provides a detailed survey of the IRS technology, limitations in the current research, and the related research opportunities and possible solutions.

13.
Sensors (Basel) ; 22(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35214322

RESUMEN

Artificial Intelligence (AI) and Internet of Things (IoT) offer immense potential to transform conventional healthcare systems. The IoT and AI enabled smart systems can play a key role in driving the future of smart healthcare. Remote monitoring of critical and non-critical patients is one such field which can leverage the benefits of IoT and machine learning techniques. While some work has been done in developing paradigms to establish effective and reliable communications, there is still great potential to utilize optimized IoT network and machine learning technique to improve the overall performance of the communication systems, thus enabling fool-proof systems. This study develops a novel IoT framework to offer ultra-reliable low latency communications to monitor post-surgery patients. The work considers both critical and non-critical patients and is balanced between these to offer optimal performance for the desired outcomes. In addition, machine learning based regression analysis of patients' sensory data is performed to obtain highly accurate predictions of the patients' sensory data (patients' vitals), which enables highly accurate virtual observers to predict the data in case of communication failures. The performance analysis of the proposed IoT based vital signs monitoring system for the post-surgery patients offers reduced delay and packet loss in comparison to IEEE low latency deterministic networks. The gradient boosting regression analysis also gives a highly accurate prediction for slow as well as rapidly varying sensors for vital sign monitoring.


Asunto(s)
Internet de las Cosas , Inteligencia Artificial , Atención a la Salud , Humanos , Aprendizaje Automático , Proyectos Piloto
14.
Sensors (Basel) ; 22(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35214450

RESUMEN

Ultra-reliable and low-latency communication (URLLC) is considered as one of the major use cases in 5G networks to support the emerging mission-critical applications. One of the possible tools to achieve URLLC is the device-to-device (D2D) network. Due to the physical proximity of communicating devices, D2D networks can significantly improve the latency and reliability performance of wireless communication. However, the resource management of D2D networks is usually a non-convex combinatorial problem that is difficult to solve. Traditional methods usually optimize the resource allocation in an iterative way, which leads to high computational complexity. In this paper, we investigate the resource allocation problem in the time-sensitive D2D network where the latency and reliability performance is modeled by the achievable rate in the short blocklength regime. We first design a game theory-based algorithm as the baseline. Then, we propose a deep learning (DL)-based resource management framework using deep neural network (DNN). The simulation results show that the proposed DL-based method achieves almost the same performance as the baseline algorithm, while it is more time-efficient due to the end-to-end structure.

15.
Sensors (Basel) ; 22(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35062548

RESUMEN

The fifth-generation (5G) network is presented as one of the main options for Industry 4.0 connectivity. To comply with critical messages, 5G offers the Ultra-Reliable and Low latency Communications (URLLC) service category with a millisecond end-to-end delay and reduced probability of failure. There are several approaches to achieve these requirements; however, these come at a cost in terms of redundancy, particularly the solutions based on multi-connectivity, such as Packet Duplication (PD). Specifically, this paper proposes a Machine Learning (ML) method to predict whether PD is required at a specific data transmission to successfully send a URLLC message. This paper is focused on reducing the resource usage with respect to pure static PD. The concept was evaluated on a 5G simulator, comparing between single connection, static PD and PD with the proposed prediction model. The evaluation results show that the prediction model reduced the number of packets sent with PD by 81% while maintaining the same level of latency as a static PD technique, which derives from a more efficient usage of the network resources.


Asunto(s)
Comunicación , Redes de Comunicación de Computadores , Industrias , Aprendizaje Automático , Probabilidad
16.
Sensors (Basel) ; 21(23)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34884066

RESUMEN

This paper focuses on edge-enabled cloud radio access network architecture to achieve ultra-reliable communication, a crucial enabler for supporting mission-critical machine-type communication networks. We propose coordinated multi-point transmission schemes taking advantage of diversity mechanisms in interference-limited downlink cellular networks. The network scenario comprises spatially distributed multiple remote radio heads (RRHs) that may cooperate through silencing, or by using more elaborated diversity strategies such as maximum ratio transmission or transmit antenna selection to serve user equipment in the ultra-reliable operation regime. We derive an exact closed-form expression for the outage probabilities and expected values of signal-to-interference ratio for silencing, transmit antenna selection and maximum ratio transmission schemes. We formulate rate control and energy efficiency under reliability constraints to test the performance and resource usage of the proposed schemes. Furthermore, we study the impact on average system sum throughput with throughput-reliability trade-off under cooperative communication. Extensive numerical analysis shows the feasibility of ultra-reliable communication by implementing diversity schemes with RRHs cooperation.


Asunto(s)
Redes de Comunicación de Computadores , Tecnología Inalámbrica , Probabilidad , Reproducibilidad de los Resultados
17.
Sensors (Basel) ; 21(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34960454

RESUMEN

With the inclusion of tactile Internet (TI) in the industrial sector, we are at the doorstep of the tactile Industrial Internet of Things (IIoT). This provides the ability for the human operator to control and manipulate remote industrial environments in real-time. The TI use cases in IIoT demand a communication network, including ultra-low latency, ultra-high reliability, availability, and security. Additionally, the lack of the tactile IIoT testbed has made it more severe to investigate and improve the quality of services (QoS) for tactile IIoT applications. In this work, we propose a virtual testbed called IoTactileSim, that offers implementation, investigation, and management for QoS provisioning in tactile IIoT services. IoTactileSim utilizes a network emulator Mininet and robotic simulator CoppeliaSim to perform real-time haptic teleoperations in virtual and physical environments. It provides the real-time monitoring of the implemented technology parametric values, network impairments (delay, packet loss), and data flow between operator (master domain) and teleoperator (slave domain). Finally, we investigate the results of two tactile IIoT environments to prove the potential of the proposed IoTactileSim testbed.


Asunto(s)
Internet de las Cosas , Humanos , Industrias , Reproducibilidad de los Resultados , Tecnología , Tacto
18.
Sensors (Basel) ; 21(21)2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34770359

RESUMEN

Non-orthogonal multiple access (NOMA) has a key feature that the cell-center user (CCU) has prior information about the messages of the cell-edge user (CEU) in the same user-pair. It means that CCU can be used for retransmission when the CEU requests retransmission. As ultra-reliability and low-latency communication (URLLC) requires high-reliability constraints (e.g., 99.999%), using CCU for retransmission can be useful to satisfy the reliability constraint. In this study, to ensure the reliability of CEU, cooperative retransmission (CR) scheme for downlink NOMA systems is proposed. And the CR scheme is evaluated with Block error rate (BLER) considering reliability and with packet loss rate (PLR) in terms of reliability and latency constraints. And the evaluation results showed that the proposed CR scheme can satisfy the target BLER for URLLC low SNR compared to the conventional retransmission scheme, and showed the improved PLR compared to the conventional retransmission scheme in low SNRs.


Asunto(s)
Noma , Comunicación , Redes de Comunicación de Computadores , Humanos , Reproducibilidad de los Resultados , Relación Señal-Ruido
19.
Wirel Pers Commun ; 121(2): 1187-1219, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34518742

RESUMEN

The International Telecommunication Union has required that the control plane (C-plane) latency in the fifth generation (5G) ultra-reliable low-latency communication (URLLC) application scenarios should not exceed 20 ms and encouraged technical innovation to further reduce it to less than 10 ms. However, the average C-plane latency in the fourth generation (4G) Long Term Evolution-Advanced (LTE-A) system is 80 ms. Such a high latency is because of the execution of the contention-based random access procedure (RAP). In this paper, we simplify the conventional contention-based RAP from 4 to 2 steps. Furthermore, utilization of demodulation reference signal for representing the UE ID and reservation of preambles for URLLC users significantly reduces the proposed 2-step RAP latency. From the perspectives of fixing the number of URLLC users and fixing the number of preambles reserved for URLLC users, simulation results show the percentage of successes for the 2-step RAP is 83.81% and 71.83% higher than that of the 4-step RAP, respectively. Consequently, the 10 ms latency requirement of the 5G URLLC is achieved.

20.
Entropy (Basel) ; 23(7)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34356457

RESUMEN

Short-packet transmission has attracted considerable attention due to its potential to achieve ultralow latency in automated driving, telesurgery, the Industrial Internet of Things (IIoT), and other applications emerging in the coming era of the Six-Generation (6G) wireless networks. In 6G systems, a paradigm-shifting infrastructure is anticipated to provide seamless coverage by integrating low-Earth orbit (LEO) satellite networks, which enable long-distance wireless relaying. However, how to efficiently transmit short packets over a sizeable spatial scale remains open. In this paper, we are interested in low-latency short-packet transmissions between two distant nodes, in which neither propagation delay, nor propagation loss can be ignored. Decode-and-forward (DF) relays can be deployed to regenerate packets reliably during their delivery over a long distance, thereby reducing the signal-to-noise ratio (SNR) loss. However, they also cause decoding delay in each hop, the sum of which may become large and cannot be ignored given the stringent latency constraints. This paper presents an optimal relay deployment to minimize the error probability while meeting both the latency and transmission power constraints. Based on an asymptotic analysis, a theoretical performance bound for distant short-packet transmission is also characterized by the optimal distance-latency-reliability tradeoff, which is expected to provide insights into designing integrated LEO satellite communications in 6G.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA