Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Virol J ; 20(1): 153, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464399

RESUMEN

Resistant CMV infections are challenging complications after SOT and HSCT. Prompt recognition of ARMs is imperative for appropriate therapy. 108 plasma samples from 96 CMV + transplant recipients with suspected resistance were analysed in CNM in a retrospective nationwide study from January 2018 to July 2022 for resistance genotyping. ARMs in UL97 and UL54 were found in 26.87% (18/67) and 10.60% (7/66) of patients, respectively. Patients' ARM distribution in UL97 was as follows: L595S n = 3; L595S/M460I n = 1; L595S/N510S n = 1; L595W n = 1; C603W n = 4; A594V n = 3; A594E n = 1; C607Y n = 1; L397R/T409M/H411L/M460I n = 1; L397I n = 1; H520Q n = 1; four patients showed ARMs in UL54 as well (F412C n = 1; T503I n = 2; P522S n = 1), whereas three patients exhibited ARMs in UL54 only (L501I/T503I/L516R/A834P n = 1; A987G n = 2). L516R in UL54 and L397R/I and H411L in UL97 have been found for the first time in a clinical sample. L595S/W was the most prevalent ARM found to lend resistance to GCV. In UL54 all ARMs lent resistance to GCV and CDV. In addition, A834P, found in one patient, also lent resistance to FOS. CMV load did not differ significantly in patients with or without ARMs, and no differences were found either between patients with ARMs in UL97 or in UL97 and UL54. Despite extensive use of classical antivirals for the treatment of CMV infection after HSCT and SOT, ARMs occurred mainly in viral UL97 kinase, which suggests that CDV and mostly FOS continue to be useful alternatives to nucleoside analogues after genotypic detection of ARMs.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Humanos , Citomegalovirus/genética , Ganciclovir/uso terapéutico , Receptores de Trasplantes , Estudios Retrospectivos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Infecciones por Citomegalovirus/tratamiento farmacológico , Mutación , Farmacorresistencia Viral/genética
2.
Int J Mol Sci ; 21(9)2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365661

RESUMEN

Bcl2-associated athanogene (BAG) 3, which is a chaperone-mediated selective autophagy protein, plays a pivotal role in modulating the life cycle of a wide variety of viruses. Both positive and negative modulations of viruses by BAG3 were reported. However, the effects of BAG3 on pseudorabies virus (PRV) remain unknown. To investigate whether BAG3 could modulate the PRV life cycle during a lytic infection, we first identified PRV protein UL56 (pUL56) as a novel BAG3 interactor by co-immunoprecipitation and co-localization analyses. The overexpression of pUL56 induced a significant degradation of BAG3 at protein level via the lysosome pathway. The C-terminal mutations of 181L/A, 185L/A, or 181L/A-185L/A in pUL56 resulted in a deficiency in pUL56-induced BAG3 degradation. In addition, the pUL56 C-terminal mutants that lost Golgi retention abrogated pUL56-induced BAG3 degradation, which indicates a Golgi retention-dependent manner. Strikingly, BAG3 was not observed to be degraded in either wild-type or UL56-deleted PRV infected cells as compared to mock infected ones, whereas the additional two adjacent BAG3 cleaved products were found in the infected cells in a species-specific manner. Overexpression of BAG3 significantly suppressed PRV proliferation, while knockdown of BAG3 resulted in increased viral yields in HEK293T cells. Thus, these data indicated a negative regulation role of BAG3 during PRV lytic infection. Collectively, our findings revealed a novel molecular mechanism on host protein degradation induced by PRV pUL56. Moreover, we identified BAG3 as a host restricted protein during PRV lytic infection in cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Herpesvirus Suido 1/fisiología , Interacciones Huésped-Patógeno , Dominios y Motivos de Interacción de Proteínas , Proteínas Estructurales Virales/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Aparato de Golgi/metabolismo , Lisosomas/metabolismo , Modelos Biológicos , Unión Proteica , Transporte de Proteínas , Proteolisis , Seudorrabia/metabolismo , Seudorrabia/virología , Especificidad de la Especie , Proteínas Estructurales Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA