Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Asian J Pharm Sci ; 19(2): 100902, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38595331

RESUMEN

With the rapid development of the fields of tumor biology and immunology, tumor immunotherapy has been used in clinical practice and has demonstrated significant therapeutic potential, particularly for treating tumors that do not respond to standard treatment options. Despite its advances, immunotherapy still has limitations, such as poor clinical response rates and differences in individual patient responses, largely because tumor tissues have strong immunosuppressive microenvironments. Many tumors have a tumor microenvironment (TME) that is characterized by hypoxia, low pH, and substantial numbers of immunosuppressive cells, and these are the main factors limiting the efficacy of antitumor immunotherapy. The TME is crucial to the occurrence, growth, and metastasis of tumors. Therefore, numerous studies have been devoted to improving the effects of immunotherapy by remodeling the TME. Effective regulation of the TME and reversal of immunosuppressive conditions are effective strategies for improving tumor immunotherapy. The use of multidrug combinations to improve the TME is an efficient way to enhance antitumor immune efficacy. However, the inability to effectively target drugs decreases therapeutic effects and causes toxic side effects. Nanodrug delivery carriers have the advantageous ability to enhance drug bioavailability and improve drug targeting. Importantly, they can also regulate the TME and deliver large or small therapeutic molecules to decrease the inhibitory effect of the TME on immune cells. Therefore, nanomedicine has great potential for reprogramming immunosuppressive microenvironments and represents a new immunotherapeutic strategy. Therefore, this article reviews strategies for improving the TME and summarizes research on synergistic nanomedicine approaches that enhance the efficacy of tumor immunotherapy.

2.
EMBO Rep ; 25(4): 1962-1986, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38548973

RESUMEN

Oncogenic intercellular signaling is regulated by extracellular vesicles (EVs), but the underlying mechanisms remain mostly unclear. Since TCTP (translationally controlled tumor protein) is an EV component, we investigated whether it has a role in genotoxic stress signaling and malignant transformation. By generating a Tctp-inducible knockout mouse model (Tctp-/f-), we report that Tctp is required for genotoxic stress-induced apoptosis signaling via small EVs (sEVs). Human breast cancer cells knocked-down for TCTP show impaired spontaneous EV secretion, thereby reducing sEV-dependent malignant growth. Since Trp53-/- mice are prone to tumor formation, we derived tumor cells from Trp53-/-;Tctp-/f- double mutant mice and describe a drastic decrease in tumori-genicity with concomitant decrease in sEV secretion and content. Remarkably, Trp53-/-;Tctp-/f- mice show highly prolonged survival. Treatment of Trp53-/- mice with sertraline, which inhibits TCTP function, increases their survival. Mechanistically, TCTP binds DDX3, recruiting RNAs, including miRNAs, to sEVs. Our findings establish TCTP as an essential protagonist in the regulation of sEV-signaling in the context of apoptosis and tumorigenicity.


Asunto(s)
Biomarcadores de Tumor , Neoplasias , Ratones , Humanos , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias/patología , Apoptosis , Transducción de Señal
3.
Metabolites ; 11(5)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922558

RESUMEN

A comprehensive view of cell metabolism provides a new vision of cancer, conceptualized as tissue with cellular-altered metabolism and energetic dysfunction, which can shed light on pathophysiological mechanisms. Cancer is now considered a heterogeneous ecosystem, formed by tumor cells and the microenvironment, which is molecularly, phenotypically, and metabolically reprogrammable. A wealth of evidence confirms metabolic reprogramming activity as the minimum common denominator of cancer, grouping together a wide variety of aberrations that can affect any of the different metabolic pathways involved in cell physiology. This forms the basis for a new proposed classification of cancer according to the altered metabolic pathway(s) and degree of energy dysfunction. Enhanced understanding of the metabolic reprogramming pathways of fatty acids, amino acids, carbohydrates, hypoxia, and acidosis can bring about new therapeutic intervention possibilities from a metabolic perspective of cancer.

4.
Biomaterials ; 262: 120343, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32911254

RESUMEN

Here we report that reactive oxygen species (ROS) can reprogram cancer cells to increase the expression of specific receptors and modulate the delivery of nanomaterials. Gold and γ-polyglutamic acid (γ-PGA) hybrid nanoparticles (PGANP) were prepared via a facile single-step process. Gold nanoclusters in PGANP were dispersed within the tangled γ-PGA matrix of the nanoparticles. The condensed assembly of gold nanoclusters in γ-PGA matrix enabled the interparticle plasmon coupling effect, which lacks in single gold nanoparticles. Compared with gold nanoparticles of the similar sizes, PGANP showed significantly higher absorbance at near infrared (NIR) wavelength and light-to-heat converting ratios, resulting in greater temperature increase upon NIR light irradiation. Pretreatment of HeLa cancer cells with methylene blue (MB) generated reactive oxygen species. The ROS reprogrammed the cancer cells to express higher cell membrane levels of gamma glutamyl transferase (GGT), which is known to bind to γ-PGA of PGANP. MB pretreatment significantly enhanced delivery of PGANP to cancer cells. Cancer cells internalized PGANP to a greater extent and, were highly susceptible to irradiation with NIR light, which reduced cell viability to near zero. In vivo, MB pretreatment of HeLa xenograft mice increased the expression of GGT in tumor tissues. In mice pretreated with MB and exposed to NIR irradiation, PGANP treatment resulted in complete tumor ablation. The strategy of actively reprogramming tumor membrane levels of target receptors could be widely applied to overcome the heterogeneity of cancer cells. Although we used interparticle plasmon coupling effect-based PGANP for proving the concept of receptor-modulated delivery, this strategy could be broadly applicable to the active modulation of the receptor-mediated delivery of anticancer nanomaterials.


Asunto(s)
Hipertermia Inducida , Nanopartículas del Metal , Nanopartículas , Nanoestructuras , Animales , Línea Celular Tumoral , Oro , Células HeLa , Humanos , Ratones
5.
Cytokine Growth Factor Rev ; 56: 94-101, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32826166

RESUMEN

Recent advances in cancer immunotherapy have renewed interest in oncolytic viruses (OVs) as a synergistic platform for the development of novel antitumor strategies. Cancer cells adopt multiple mechanisms to evade and suppress antitumor immune responses, essentially establishing a non-immunogenic ('cold') tumor microenvironment (TME), with poor T-cell infiltration and low mutational burden. Limitations to the efficacy of immunotherapy still exist, especially for a variety of solid tumors, where new approaches are necessary to overcome physical barriers in the TME and to mitigate adverse effects associated with current immunotherapeutics. OVs offer an attractive alternative by inducing direct oncolysis, immunogenic cell death, and immune stimulation. These multimodal mechanisms make OVs well suited to reprogram non-immunogenic tumors and TME into inflamed, immunogenic ('hot') tumors; enhanced release of tumor antigens by dying cancer cells is expected to augment T-cell infiltration, thereby eliciting potent antitumor immunity. Advances in virus engineering and understanding of tumor biology have allowed the optimization of OV-tumor selectivity, oncolytic potency, and immune stimulation. However, OV antitumor activity is likely to achieve its greatest potential as part of combinatorial strategies with other immune or cancer therapeutics.


Asunto(s)
Inmunoterapia , Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Neoplasias/terapia , Microambiente Tumoral
6.
Rev Esp Patol ; 52(2): 92-102, 2019.
Artículo en Español | MEDLINE | ID: mdl-30902384

RESUMEN

The group of diseases that we call cancer share a biological structure formed by a complex ecosystem, with altered intercellular communication, information fields, development and tissue function. Beyond the genetic alterations of the tumor cell, the demonstration of an altered ecosystem, with interconnections at systemic levels, opens up a new perspective on cancer biology and behavior. Different tumor facets, such as morphology, classification, clinical aggressiveness, prognosis and response to treatment now appear under a comprehensive vision that offers a new horizon of study, research and clinical management. The Somatic Mutation Theory in cancer, in force for more than one hundred years, is now completed by the study of the tumor microenvironment, the extracellular matrix, the stromal cells, the immune response, the innervation, the nutrition, the mitochondria, the metabolism, the interstitial fluid, the mechanical and electromagnetic properties of the tissue and many other areas of emerging knowledge; thus opening the door to a reprogramming exercise of the tumor phenotype through the modification of the keys offered by this new paradigm. Its recognition makes it possible to go from considering the oncological process as a cellular problem to a supracellular alteration based on the disorganization of tissues, immersed in the relationships of the complex system of the living being.


Asunto(s)
Neoplasias/patología , Microambiente Tumoral , Humanos , Neoplasias/genética
7.
Mol Cell Oncol ; 5(4): e1497860, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30250933

RESUMEN

Genetic lineage tracing in cell type-specific mouse models of T-cell acute lymphoblastic leukemia (T-ALL) have revealed that tumor cell identity is imposed by expression of the oncogene Lim Domain Only 2 (LMO2), rather than by the target cell phenotype. This approach allowed to identify that secondary genomic alterations, like Notch1 mutations, appeared late and only took place within the thymus during T-ALL development. These concepts are therefore critical for the development of modern therapies aimed at curing T-ALL.

8.
Cancers (Basel) ; 10(5)2018 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-29710783

RESUMEN

Pancreatic cancer has one of the highest mortality rates among all types of cancers. The disease is highly aggressive and typically diagnosed in late stage making it difficult to treat. Currently, the vast majority of therapeutic regimens have only modest curative effects, and most of them are in the surgical/neo-adjuvant setting. There is a great need for new and more effective treatment strategies in common clinical practice. Previously, pathogenesis of pancreatic cancer was attributed solely to genetic mutations; however, recent advancements in the field have demonstrated that aberrant activation of epigenetic pathways contributes significantly to the pathogenesis of the disease. The identification of these aberrant activated epigenetic pathways has revealed enticing targets for the use of epigenetic inhibitors to mitigate the phenotypic changes driven by these cascades. These pathways have been found to be responsible for overactivation of growth signaling pathways and silencing of tumor suppressors and other cell cycle checkpoints. Furthermore, new miRNA signatures have been uncovered in pancreatic ductal adenocarcinoma (PDAC) patients, further widening the window for therapeutic opportunity. There has been success in preclinical settings using both epigenetic inhibitors as well as miRNAs to slow disease progression and eliminate diseased tissues. In addition to their utility as anti-proliferative agents, the pharmacological inhibitors that target epigenetic regulators (referred to here as readers, writers, and erasers for their ability to recognize, deposit, and remove post-translational modifications) have the potential to reconfigure the epigenetic landscape of diseased cells and disrupt the cancerous phenotype. The potential to “reprogram” cancer cells to revert them to a healthy state presents great promise and merits further investigation.

9.
Cytotechnology ; 70(2): 879-890, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29445895

RESUMEN

The reprogramming of cancer cells includes shifts in glucose and glycogen metabolism. The aim of our work was to check the ability of forming glycogen grains in hepatocellular tumor cell lines of various dedifferentiation levels. We studied the monolayer culture established in vitro after explanting cells from rat ascites Zajdela hepatoma strain C (ZH-C) as a "parental" line and its five daughter clonal sublines: the holoclonal sublines 3H, 5F, 6H and the meroclonal ones 1E, 9C, which possess, respectively, the properties of cancer stem-like cells (CSLCs) and cancer progenitor-like cells (CPLCs). Besides, we studied four permanent cell lines of a rat hepatoma HTC, two murine hepatomas BWTG3 and MH-22a, and human hepatoblastoma HepG2. We used normal rat hepatocytes as positive control cells that form glycogen. We estimated relative cell dedifferentiation levels of the studied lines via analysis of cell morphology, morphometry and motility character on stained cell preparations and lifetime video files. Glycogen in the cells was detected using a Schiff type Au-SO2 reagent. All studied hepatocellular tumor lines were not of equal dedifferentiation level as manifested by different nucleus-to-cytoplasm ratio, by epithelium-like or fibroblast-like morphology, by tight or loosen intercellular contacts, by cell migration of collective or individual types. Glycogen fluorescence of uneven intensity was observed in all normal rat hepatocytes, but only in some cell groups or in single cells of hepatocellular tumor lines. The large or small fluorescent grains were found not only in relatively less dedifferentiated parental ZH-C line, BWTG3 and HepG2 lines, but also in moderately dedifferentiated 1E and HTC lines and even in severely dedifferentiated 3H, 5F and 6H sublines, as well as in the islets of the rat ascites hepatoma induced in vivo by the injection of 3H cells (the tumor-initiating cells). On the other hand, MH-22 and 9C lines, being relatively less and moderately dedifferentiated, showed no glycogen fluorescence. Thus, in 10 tumor cell lines of hepatocellular origin, an ability to reserve glycogen manifested no obvious dependency on their dedifferentiation level. Glycogen grains were detected in some cells even of the severely dedifferentiated lines: in single CSLCs of holoclonal ZH sublines grown in vitro and in a majority of tumor-initiating cells derived from ascites hepatoma in vivo. We suggest that dynamic changes in glycogen formation in CSLCs and tumor-initiating cells might be of importance for their dedifferentiation, self-renewal in vitro, survival and metastasis in vivo. The role of glycogen in maintaining viability and metastasis of tumor cells is to be further studied.

11.
Dev Dyn ; 242(9): 1078-93, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23780720

RESUMEN

BACKGROUND: Tissue microenvironment plays key roles in regulating the progression of aggressive tumors. Tumors are uncommon in the early embryo, suggesting that embryonic tissue microenvironments are nonpermissive for tumors. Yet, the effects of embryonic tissue microenvironments on tumor cells have not been extensively studied. We have, therefore, tested the behavior of human glioblastoma multiforme (GBM) cells transplanted into a central neural tissue microenvironment in the chicken embryo. RESULTS: GBM cells were cultured as spheres to enrich for GBM stem cells (GSCs) and transduced with GFP for identification. Within the proliferative embryonic neural tissue, GSC-enriched GBM cells exhibited reduced proliferation and survival, altered gene expression, and formed no tumors, in marked contrast to their aggressive behavior in vitro and tumor formation in other tissue microenvironments including the chorioallantoic membrane of the chicken embryo and the brain of adult severe combined immunodeficiency (SCID) mice. Surviving cells in the spinal neural tube exhibited tumor-atypical expression profiles of neuron-, glia-, stem cell-, and tumor-related genes. CONCLUSIONS: Embryonic neural tissue provides a poor environment for GBM cell survival and tumor formation, and redirects differentiation toward a more benign phenotype. Understanding the anti-tumorigenic effects of this embryonic tissue microenvironment could provide opportunities to develop novel therapies for GBM treatment.


Asunto(s)
Microambiente Celular/fisiología , Glioblastoma/metabolismo , Tejido Nervioso/embriología , Tubo Neural/embriología , Animales , Línea Celular , Embrión de Pollo , Femenino , Glioblastoma/patología , Xenoinjertos , Humanos , Masculino , Ratones , Ratones SCID , Trasplante de Neoplasias , Tejido Nervioso/citología , Tubo Neural/citología
12.
Cell Cycle ; 12(2): 353-64, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23287475

RESUMEN

One undisputed milestone of traditional oncology is neoplastic progression, which consists of a progressive selection of dedifferentiated cells driven by a chance sequence of genetic mutations. Recently it has been demonstrated that the overexpression of well-defined transcription factors reprograms somatic cells to the pluripotent stem status. The demonstration raises crucial questions as to whether and to what extent this reprogramming contributes to tumorigenesis, and whether the epigenetic changes involved in it are reversible. Here, we show for the first time that a tumor produced in vivo by a chemical carcinogen is the product of the interaction between neoplastic progression and reprogramming. The experimental model employed the prototype of ascites tumors, the Yoshida AH130 hepatoma and other neoplasias, including human melanoma. AH130 hepatoma was started in the liver by the carcinogen o-aminoazotoluene. This compound binds to and abolishes the p53 protein, producing a genomic instability that promotes both the neoplastic progression and the hepatoma reprogramming. Eventually this tumor contained 100% CD133(+) elements and pO(2)-dependent percentages of the three embryonic transcription factors Nanog, Klf4 and c-Myc. Once transferred into aerobic cultures, the minor cellular fraction expressing this triad generates various types of adherent cells, which are progressively substituted by non-tumorigenic elements committed to fibromuscular, neuronal and glial differentiation. This reprogramming appears to be accomplished stepwise, with the assembly of the triad into a sophisticated transcriptional, oxygen-dependent circuitry, in which Nanog and Klf4 antagonistically regulate c-Myc, and hence, cell hypoxia survival and cell cycle activation.


Asunto(s)
Desdiferenciación Celular/fisiología , Transformación Celular Neoplásica/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Animales , Desdiferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Transformación Celular Neoplásica/efectos de los fármacos , Cartilla de ADN/genética , Citometría de Flujo , Inestabilidad Genómica/efectos de los fármacos , Humanos , Factor 4 Similar a Kruppel , Neoplasias Hepáticas Experimentales/inducido químicamente , Masculino , Microscopía Electrónica , Proteína Homeótica Nanog , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína p53 Supresora de Tumor/metabolismo , o-Aminoazotolueno/metabolismo , o-Aminoazotolueno/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA