RESUMEN
Translational research in adequate experimental models is necessary to optimize boron neutron capture therapy (BNCT) for different pathologies. Multiple radiobiological in vivo studies have been performed in a wide variety of animal models, studying multiple boron compounds, routes of compound administration, and a range of administration strategies. Animal models are useful for the study of the stability and potential toxicity of new boron compounds or delivery systems, BNCT theranostic strategies, the evaluation of biomarkers to monitor BNCT therapeutic and adverse effects, and to study the BNCT immune response by the host against tumor cells. This article will mention examples of these studies, highlighting the importance of experimental animal models for the advancement of BNCT. Animal models are essential to design novel, safe, and effective clinical BNCT protocols for existing or new targets for BNCT.
RESUMEN
The authors developed a retinoblastoma model using fresh harvested cells from an enucleated eye that were transplanted in chick embryos (chorioallantoic membrane model). The transplanted embryos were treated with escalating doses of Melphalan. This exploratory model was developed with the goal of testing drug sensitivity. Our findings suggest this tumor model could be employed to personalize treatment for patients with retinoblastoma, especially those with bilateral and more refractory disease.