Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
J Nanobiotechnology ; 22(1): 227, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711078

RESUMEN

BACKGROUND: Elevated interstitial fluid pressure within tumors, resulting from impaired lymphatic drainage, constitutes a critical barrier to effective drug penetration and therapeutic outcomes. RESULTS: In this study, based on the photosynthetic characteristics of algae, an active drug carrier (CP@ICG) derived from Chlorella pyrenoidosa (CP) was designed and constructed. Leveraging the hypoxia tropism and phototropism exhibited by CP, we achieved targeted transport of the carrier to tumor sites. Additionally, dual near-infrared (NIR) irradiation at the tumor site facilitated photosynthesis in CP, enabling the breakdown of excessive intratumoral interstitial fluid by generating oxygen from water decomposition. This process effectively reduced the interstitial pressure, thereby promoting enhanced perfusion of blood into the tumor, significantly improving deep-seated penetration of chemotherapeutic agents, and alleviating tumor hypoxia. CONCLUSIONS: CP@ICG demonstrated a combined effect of photothermal/photodynamic/starvation therapy, exhibiting excellent in vitro/in vivo anti-tumor efficacy and favorable biocompatibility. This work provides a scientific foundation for the application of microbial-enhanced intratumoral drug delivery and tumor therapy.


Asunto(s)
Chlorella , Portadores de Fármacos , Fotosíntesis , Animales , Ratones , Línea Celular Tumoral , Portadores de Fármacos/química , Humanos , Terapia Combinada , Fotoquimioterapia/métodos , Neoplasias/terapia , Antineoplásicos/farmacología , Ratones Endogámicos BALB C , Sistemas de Liberación de Medicamentos/métodos , Verde de Indocianina/farmacocinética , Verde de Indocianina/química , Femenino
3.
Mol Cell Proteomics ; 22(6): 100547, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37059366

RESUMEN

Basal cell carcinomas (BCCs) and cutaneous squamous cell carcinomas (SCCs) are the most frequent types of cancer, and both originate from the keratinocyte transformation, giving rise to the group of tumors called keratinocyte carcinomas (KCs). The invasive behavior is different in each group of KC and may be influenced by their tumor microenvironment. The principal aim of the study is to characterize the protein profile of the tumor interstitial fluid (TIF) of KC to evaluate changes in the microenvironment that could be associated with their different invasive and metastatic capabilities. We obtained TIF from 27 skin biopsies and conducted a label-free quantitative proteomic analysis comparing seven BCCs, 16 SCCs, and four normal skins. A total of 2945 proteins were identified, 511 of them quantified in more than half of the samples of each tumoral type. The proteomic analysis revealed differentially expressed TIF proteins that could explain the different metastatic behavior in both KCs. In detail, the SCC samples disclosed an enrichment of proteins related to cytoskeleton, such as Stratafin and Ladinin-1. Previous studies found their upregulation positively correlated with tumor progression. Furthermore, the TIF of SCC samples was enriched with the cytokines S100A8/S100A9. These cytokines influence the metastatic output in other tumors through the activation of NF-kB signaling. According to this, we observed a significant increase in nuclear NF-kB subunit p65 in SCCs but not in BCCs. In addition, the TIF of both tumors was enriched with proteins involved in the immune response, highlighting the relevance of this process in the composition of the tumor environment. Thus, the comparison of the TIF composition of both KCs provides the discovery of a new set of differential biomarkers. Among them, secreted cytokines such as S100A9 may help explain the higher aggressiveness of SCCs, while Cornulin is a specific biomarker for BCCs. Finally, the proteomic landscape of TIF provides key information on tumor growth and metastasis, which can contribute to the identification of clinically applicable biomarkers that may be used in the diagnosis of KC, as well as therapeutic targets.


Asunto(s)
Carcinoma Basocelular , Carcinoma de Células Escamosas , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/metabolismo , Líquido Extracelular/metabolismo , FN-kappa B/metabolismo , Proteómica , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patología , Carcinoma de Células Escamosas/metabolismo , Queratinocitos/metabolismo , Biomarcadores de Tumor/metabolismo , Microambiente Tumoral
4.
Biomaterials ; 290: 121816, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36201946

RESUMEN

The absence of lymphatic vessels in tumors leads to the retention of interstitial fluid, and the formation of an inverse pressure difference between the tumor and blood vessels hinders drug delivery deep into the tumor, which leads to tumor recurrence and metastasis. Therefore, we designed a novel strategy to downregulate tumor interstitial fluid pressure (TIFP) by water splitting in the tumor interstitium based on piezoelectric catalysis nanomedicine. First, the chemotherapeutic drug doxorubicin (DOX) was loaded on the piezoelectric catalytic material MoS2 and then encapsulated with tumor cell membrane (CM) to obtain MD@C. MD@C could not only target the tumor through homologous targeting but, more importantly, also triggered piezoelectric catalytic water splitting under ultrasound (US) stimulation; as a result, the TIFPs of U14 and PAN02 tumor-bearing mice were reduced to 57.14% and 45.5%, respectively, and the tumor inhibition rates of MD@C were 96.75% and 99.21%, which increased the perfusion of blood-derived drugs in the tumors. Moreover, the hydroxyl radicals generated by piezoelectric catalysis could effectively inhibit the growth of tumors in combination with DOX. Consequently, the piezoelectric catalytic water splitting strategy of MD@C can enhance drug delivery, providing a new universal platform for the treatment of solid malignant tumors.


Asunto(s)
Nanopartículas , Neoplasias , Ratones , Animales , Molibdeno , Doxorrubicina/uso terapéutico , Doxorrubicina/farmacología , Nanomedicina , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Catálisis , Agua , Línea Celular Tumoral , Nanopartículas/uso terapéutico
5.
EBioMedicine ; 83: 104216, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35986950

RESUMEN

The tumour microenvironment (TME) imposes a major obstacle to infiltrating T-lymphocytes and suppresses their function. Several immune checkpoint proteins that interfere with ligand/receptor interactions and impede T-cell anti-tumour responses have been identified. Immunotherapies that block immune checkpoints have revolutionized the treatment paradigm for many patients with advanced-stage tumours. However, metabolic constraints and soluble factors that exist within the TME exacerbate the functional exhaustion of tumour-infiltrating T-cells. Here we review these multifactorial constraints and mechanisms - elevated immunosuppressive metabolites and enzymes, nutrient insufficiency, hypoxia, increased acidity, immense amounts of extracellular ATP and adenosine, dysregulated bioenergetic and purinergic signalling, and ionic imbalance - that operate in the TME and collectively suppress T-cell function. We discuss how scientific advances could help overcome the complex TME obstacles for tumour-infiltrating T-lymphocytes, aiming to stimulate further research for developing new therapeutic strategies by harnessing the full potential of the immune system in combating cancer.


Asunto(s)
Neoplasias , Linfocitos T , Adenosina , Adenosina Trifosfato , Humanos , Proteínas de Punto de Control Inmunitario , Inmunoterapia , Ligandos , Neoplasias/patología , Microambiente Tumoral
7.
Front Oncol ; 12: 852454, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558507

RESUMEN

Sonodynamic therapy (SDT) is a promising treatment method for solid tumors. However, the high interstitial fluid pressure (IFP) in tumor tissues limits the accumulation of sonosensitizers. In the present study, microbubbles ultrasonic cavitation was used to regulate the tumor's IFP and evaluate SDT effects. Rabbit VX2 tumor tissues were treated with microbubbles ultrasonic cavitation. The IFP of different tumor parts before and after cavitation was measured by the WIN method. The accumulation of the sonosensitizers hematoporphyrin monomethyl ether (HMME) in tumor tissues was observed using an ultramicro spectrophotometer and laser confocal microscope. Then, tumor-bearing rabbits were treated with SDT once a week for eight weeks and the therapeutic effect was evaluated. After microbubbles ultrasonic cavitation treatment, the tumor's IFP decreased and the HMME concentration increased. We concluded that microbubbles ultrasonic cavitation can increase HMME accumulation in rabbit VX2 tumors and increase SDT therapeutic effects.

8.
Anticancer Res ; 42(3): 1327-1332, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35220223

RESUMEN

BACKGROUND/AIM: Tumor interstitial fluid (TIF), a component of the tumor microenvironment, is a valuable source of molecules and substances that help in diagnosis and prognosis of solid tumors. There is still no consensus on the optimal method for collecting TIF. Therefore, this study aimed to evaluate the effectiveness of a new method of collecting TIF in invasive ductal carcinoma (IDC) samples for cytokine interleukin 1ß (IL1ß) quantification. MATERIALS AND METHODS: Forty women allowed the collection of TIF using absorbent paper strips during the performance of the core biopsy. The samples were stored at a temperature of -80°C and then analyzed using an enzyme-linked immunoassay. RESULTS: The mean values for IL1ß and total protein were 11.39 mg/ml and 2.15 mg/ml, respectively. CONCLUSION: it was possible to quantify the cytokine IL1ß and the total protein concentration present in the tumor tissue through TIF collection with the use of absorbent paper filters, demonstrating the effectiveness of this new method in oncology.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias de la Mama/inmunología , Carcinoma Ductal de Mama/inmunología , Líquido Extracelular/inmunología , Interleucina-1beta/análisis , Adulto , Anciano , Biopsia con Aguja Gruesa , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Persona de Mediana Edad , Microambiente Tumoral
9.
NMR Biomed ; 34(7): e4516, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33817893

RESUMEN

The effect of a human vascular endothelial growth factor antibody on the vasculature of human tumor grown in rat brain was studied. Using dynamic contrast-enhanced magnetic resonance imaging, the effects of intravenous bevacizumab (Avastin; 10 mg/kg) were examined before and at postadministration times of 1, 2, 4, 8, 12 and 24 h (N = 26; 4-5 per time point) in a rat model of orthotopic, U251 glioblastoma (GBM). The commonly estimated vascular parameters for an MR contrast agent were: (i) plasma distribution volume (vp ), (ii) forward volumetric transfer constant (Ktrans ) and (iii) reverse transfer constant (kep ). In addition, extracellular distribution volume (VD ) was estimated in the tumor (VD-tumor ), tumor edge (VD-edge ) and the mostly normal tumor periphery (VD-peri ), along with tumor blood flow (TBF), peri-tumoral hydraulic conductivity (K) and interstitial flow (Flux) and tumor interstitial fluid pressure (TIFP). Studied as % changes from baseline, the 2-h post-treatment time point began showing significant decreases in vp , VD-tumor, VD-edge and VD-peri , as well as K, with these changes persisting at 4 and 8 h in vp , K, VD-tumor, -edge and -peri (t-tests; p < 0.05-0.01). Decreases in Ktrans were observed at the 2- and 4-h time points (p < 0.05), while interstitial volume fraction (ve ; = Ktrans /kep ) showed a significant decrease only at the 2-h time point (p < 0.05). Sustained decreases in Flux were observed from 2 to 24 h (p < 0.01) while TBF and TIFP showed delayed responses, increases in the former at 12 and 24 h and a decrease in the latter only at 12 h. These imaging biomarkers of tumor vascular kinetics describe the short-term temporal changes in physical spaces and fluid flows in a model of GBM after Avastin administration.


Asunto(s)
Bevacizumab/uso terapéutico , Glioma/irrigación sanguínea , Glioma/tratamiento farmacológico , Animales , Bevacizumab/farmacología , Línea Celular Tumoral , Femenino , Glioma/diagnóstico por imagen , Humanos , Cinética , Imagen por Resonancia Magnética , Modelos Biológicos , Ratas , Distribución Tisular
10.
Math Biosci Eng ; 17(5): 6128-6148, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-33120592

RESUMEN

In comparison with lymphomas and leukemias, chemotherapy of solid neoplasms, i.e., cancer, has much more limited success in curing the patient. This lack of efficacy of chemotherapy has been attributed to increased interstitial fluid pressure within cancers, which obstructs convection and only permits diffusion of oxygen and nutrients about 100 µm from blood vessels. As diffusion is limited to this distance, hypoxic and necrotic fractions within the tumor are observed beyond this region. The comparably small number of cancer cells that can be targeted with drugs inevitably leads to an ineffective treatment response. This study presents an analysis of the influence of interstitial fluid pressure on the chemotherapeutic effect in an HT29 human colon cancer xenograft mouse tumor model. To investigate the limited distribution of drugs into primary tumor and metastases, we developed a mathematical model describing tumor growth dynamics of oxygenated, hypoxic, and necrotic fractions, combined with a pharmacokinetic-pharmacodynamic model describing the behavior and effectivity of the chemotherapeutic agent. According to the numerical simulations, the age of the tumor at treatment was the decisive factor in the reduction in size of the primary tumor. This effect is mediated by the rapid decrease in the percentage of oxygenated cells within the tumor, which reduces the fraction of cells that can be affected by the drug. As in the primary tumor, interstitial fluid pressure builds up in metastases when they reach a specific size, leading to the formation of tumor fractions. This behavior is absent if the metastasis enters a dormant phase before the threshold for the development of interstitial fluid pressure has been reached. The small size of these metastases maximizes therapeutic success since they consist only of oxygenated cells, and the drug therefore affects all the cells.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Antineoplásicos/uso terapéutico , Convección , Líquido Extracelular , Humanos , Ratones , Modelos Biológicos , Neoplasias/tratamiento farmacológico
11.
Breast Cancer Res ; 22(1): 73, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32605588

RESUMEN

BACKGROUND: Studies on tumor-secreted microRNAs point to a functional role of these in cellular communication and reprogramming of the tumor microenvironment. Uptake of tumor-secreted microRNAs by neighboring cells may result in the silencing of mRNA targets and, in turn, modulation of the transcriptome. Studying miRNAs externalized from tumors could improve cancer patient diagnosis and disease monitoring and help to pinpoint which miRNA-gene interactions are central for tumor properties such as invasiveness and metastasis. METHODS: Using a bioinformatics approach, we analyzed the profiles of secreted tumor and normal interstitial fluid (IF) microRNAs, from women with breast cancer (BC). We carried out differential abundance analysis (DAA), to obtain miRNAs, which were enriched or depleted in IFs, from patients with different clinical traits. Subsequently, miRNA family enrichment analysis was performed to assess whether any families were over-represented in the specific sets. We identified dysregulated genes in tumor tissues from the same cohort of patients and constructed weighted gene co-expression networks, to extract sets of co-expressed genes and co-abundant miRNAs. Lastly, we integrated miRNAs and mRNAs to obtain interaction networks and supported our findings using prediction tools and cancer gene databases. RESULTS: Network analysis showed co-expressed genes and miRNA regulators, associated with tumor lymphocyte infiltration. All of the genes were involved in immune system processes, and many had previously been associated with cancer immunity. A subset of these, BTLA, CXCL13, IL7R, LAMP3, and LTB, was linked to the presence of tertiary lymphoid structures and high endothelial venules within tumors. Co-abundant tumor interstitial fluid miRNAs within this network, including miR-146a and miR-494, were annotated as negative regulators of immune-stimulatory responses. One co-expression network encompassed differences between BC subtypes. Genes differentially co-expressed between luminal B and triple-negative breast cancer (TNBC) were connected with sphingolipid metabolism and predicted to be co-regulated by miR-23a. Co-expressed genes and TIF miRNAs associated with tumor grade were BTRC, CHST1, miR-10a/b, miR-107, miR-301a, and miR-454. CONCLUSION: Integration of IF miRNAs and mRNAs unveiled networks associated with patient clinicopathological traits, and underlined molecular mechanisms, specific to BC sub-groups. Our results highlight the benefits of an integrative approach to biomarker discovery, placing secreted miRNAs within a biological context.


Asunto(s)
Linfocitos Infiltrantes de Tumor/inmunología , MicroARNs/genética , Neoplasias de la Mama Triple Negativas/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología , Líquido Extracelular/metabolismo , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Linfocitos Infiltrantes de Tumor/metabolismo , MicroARNs/metabolismo , Clasificación del Tumor , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
12.
J Proteome Res ; 19(7): 2598-2605, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31877049

RESUMEN

The analysis of tumor interstitial fluid (TIF) composition is a valuable procedure to identify antimetastatic targets, and different laboratories have set up techniques for TIF isolation and proteomic analyses. However, those methods had never been compared in samples from the same tumor and patient. In this work, we compared the two most used methods, elution and centrifugation, in pieces of the same biopsy samples of cutaneous squamous cell carcinoma (cSCC). First, we established that high G-force (10 000g) was required to obtain TIF from cSCC by centrifugation. Second, we compared the centrifugation method with the elution method in pieces of three different cSCC tumors. We found that the mean protein intensities based in the number of peptide spectrum matches was significantly higher in the centrifuged samples than in the eluted samples. Regarding the robustness of the methods, we observed higher overlapping between both methods (77-80%) than among samples (50%). These results suggest that there exists an elevated consistence of TIF composition independently of the method used. However, we observed a 3-fold increase of extracellular proteins in nonoverlapped proteome obtained by centrifugation. We therefore conclude that centrifugation is the method of choice to study the proteome of TIF from cutaneous biopsies.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Biopsia , Carcinoma de Células Escamosas/diagnóstico , Centrifugación , Líquido Extracelular , Humanos , Proteoma , Proteómica
13.
Int J Mol Sci ; 19(12)2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30545144

RESUMEN

Gynecologic cancers are an important cause of worldwide mortality. The interstitium consists of solid and fluid phases, situated between the blood vessels and cells. The interstitial fluid (IF), or fluid phase, is an extracellular fluid bathing and surrounding the tissue cells. The TIF (tumor interstitial fluid) is a dynamic fluid rich in lipids, proteins and enzyme-derived substances. The molecules found in the IF may be associated with pathological changes in tissues leading to cancer growth and metastatization. Proteomic techniques have allowed an extensive study of the composition of the TIF as a source of biomarkers for gynecologic cancers. In our review, we analyze the composition of the TIF, its formation process, the sampling methods, the consequences of its accumulation and the proteomic analyses performed, that make TIF valuable for monitoring different types of cancers.


Asunto(s)
Líquido Extracelular/metabolismo , Neoplasias de los Genitales Femeninos/metabolismo , Biomarcadores de Tumor/metabolismo , Fenómenos Biofísicos , Femenino , Neoplasias de los Genitales Femeninos/patología , Humanos , Pautas de la Práctica en Medicina , Microambiente Tumoral
14.
Oncotarget ; 9(40): 26157-26170, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29899849

RESUMEN

Neuroblastoma is the most common extra-cranial solid pediatric cancer and causes approximately 15% of all childhood deaths from cancer. Although lymphatic vasculature is a prerequisite for the maintenance of tissue fluid balance and immunity in the body, little is known about the relationship between lymphatic vascularization and prognosis in neuroblastoma. We used our previously-published custom-designed tool to close open-outline vessels and measure the density, size and shape of all lymphatic vessels and microvascular segments in 332 primary neuroblastoma contained in tissue microarrays. The results were correlated with clinical and biological features of known prognostic value and with risk of progression to establish histological lymphatic vascular patterns associated with unfavorable histology. A high proportion of irregular intermediate lymphatic capillaries and irregular small collector vessels were present in tumors from patients with metastatic stage, undifferentiating neuroblasts and/or classified in the high risk. In addition, a higher lymphatic microvascularization density was found to be predictive of overall survival. Our findings show the crucial role of lymphatic vascularization in metastatic development and maintenance of tumor tissue homeostasis. These patterns may therefore help to indicate more accurate pre-treatment risk stratification and could provide candidate targets for novel therapies.

15.
Tumour Biol ; 40(4): 1010428318767195, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29629840

RESUMEN

Tumor interstitial fluid contains tumor-specific proteins that may be useful biomarkers for cancers. In this study, we identified proteins present in cholangiocarcinoma interstitial fluid. Proteins derived from three samples of tumor interstitial fluid and paired samples of adjacent normal interstitial fluid from cholangiocarcinoma patients were subjected to two-dimensional liquid chromatography with tandem mass spectrometry. Candidate proteins were selected based on a greater than twofold change in expression levels between tumor interstitial fluid and normal interstitial fluid. Upregulation of six proteins in tumor interstitial fluid, including S100 calcium binding protein A6 (S100A6), S100 calcium binding protein A9, aldo-keto reductase family 1 member C4, neuropilin-1, 14-3-3 zeta/delta, and triosephosphate isomerase was assessed by western blot and immunohistochemistry. Their potential as markers was evaluated in human cholangiocarcinoma tissue arrays, and in serum using enzyme-linked immunosorbent assay. Expression of S100A6 was higher in tumor interstitial fluid than in normal interstitial fluid and showed the highest positive rate (98.96%) in cholangiocarcinoma tissues. Serum levels of S100A6 did not differ between cholangitis and cholangiocarcinoma patients, but were significantly higher than in healthy individuals ( p < 0.0001). In cholangiocarcinoma cases, S100A6 level was associated with vascular invasion ( p = 0.007) and could distinguish cholangiocarcinoma patients from healthy individuals as effectively as the carbohydrate antigen 19-9. In addition, potential for drug treatment targeting S100A6 and other candidate proteins was also demonstrated using STITCH analysis. In conclusion, proteomics analysis of tumor interstitial fluid could be a new approach for biomarker discovery, and S100A6 is a potential risk marker for screening of cholangiocarcinoma.


Asunto(s)
Neoplasias de los Conductos Biliares/metabolismo , Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Colangiocarcinoma/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína A6 de Unión a Calcio de la Familia S100/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Líquido Extracelular/metabolismo , Humanos , Neuropilina-1/metabolismo , Proteómica/métodos , Proteínas S100/metabolismo , Triosa-Fosfato Isomerasa/metabolismo , Regulación hacia Arriba/fisiología
16.
Magn Reson Med ; 80(5): 2040-2052, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29524243

RESUMEN

PURPOSE: This study demonstrates a DCE-MRI estimate of tumor interstitial fluid pressure (TIFP) and hydraulic conductivity in a rat model of glioblastoma, with validation against an invasive wick-in-needle (WIN) technique. An elevated TIFP is considered a mark of aggressiveness, and a decreased TIFP a predictor of response to therapy. METHODS: The DCE-MRI studies were conducted in 36 athymic rats (controls and posttreatment animals) with implanted U251 cerebral tumors, and with TIFP measured using a WIN method. Using a model selection paradigm and a novel application of Patlak and Logan plots to DCE-MRI data, the MRI parameters required for estimating TIFP noninvasively were estimated. Two models, a fluid-mechanical model and a multivariate empirical model, were used for estimating TIFP, as verified against WIN-TIFP. RESULTS: Using DCE-MRI, the mean estimated hydraulic conductivity (MRI-K) in U251 tumors was (2.3 ± 3.1) × 10-5 (mm2 /mmHg-s) in control studies. Significant positive correlations were found between WIN-TIFP and MRI-TIFP in both mechanical and empirical models. For instance, in the control group of the fluid-mechanical model, MRI-TIFP was a strong predictor of WIN-TIFP (R2 = 0.76, p < .0001). A similar result was found in the bevacizumab-treated group of the empirical model (R2 = 0.93, p = .014). CONCLUSION: This research suggests that MRI dynamic studies contain enough information to noninvasively estimate TIFP in this, and possibly other, tumor models, and thus might be used to assess tumor aggressiveness and response to therapy.


Asunto(s)
Neoplasias Encefálicas , Medios de Contraste/química , Líquido Extracelular , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Animales , Fenómenos Biomecánicos/fisiología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/fisiopatología , Medios de Contraste/metabolismo , Modelos Animales de Enfermedad , Líquido Extracelular/diagnóstico por imagen , Líquido Extracelular/fisiología , Femenino , Ratones Desnudos , Ratas
17.
Pharm Res ; 35(5): 103, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29557075

RESUMEN

PURPOSE: To simulate the stimuli-responsive and stoichiometrically controlled doxorubicin (DOX) release from liposomes in in vivo tumor interstitial fluid (TIF), the effect of ammonia concentration and pH on the DOX release from liposomes in human plasma at 37°C was quantitatively evaluated in vitro and the release rate was calculated as a function of ammonia concentration and pH. METHODS: Human plasma samples spiked with DOX-loaded PEGylated liposomes (PLD) or Doxil®, containing ammonia (0.3-50 mM) at different pH values, were incubated at 37°C for 24 h. After incubation, the concentration of encapsulated DOX in the samples was determined by validated solid-phase extraction (SPE)-SPE-high performance liquid chromatography. RESULTS: Accelerated DOX release (%) from liposomes was observed as the increase of ammonia concentration and pH of the matrix, and the decrease of encapsulated DOX concentration. The release rate was expressed as a function of the ammonia concentration and pH by using Henderson-Hasselbalch equation. CONCLUSIONS: The DOX release from PLD in TIF was expressed as a function ammonia concentration and pH at various DOX concentrations. Further, it was found that the DOX release from liposomes in a simulated TIF was more than 15 times higher than in normal plasma.


Asunto(s)
Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/análogos & derivados , Líquido Extracelular/metabolismo , Modelos Biológicos , Neoplasias/tratamiento farmacológico , Amoníaco/química , Antibióticos Antineoplásicos/administración & dosificación , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacocinética , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Liposomas , Neoplasias/patología , Polietilenglicoles/administración & dosificación , Polietilenglicoles/farmacocinética
18.
Expert Rev Proteomics ; 14(11): 1021-1035, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28967788

RESUMEN

INTRODUCTION: Tumor-associated proteins released by cancer cells and by tumor stroma cells, referred as 'cancer secretome', represent a valuable resource for discovery of potential cancer biomarkers. The last decade was marked by a great increase in number of studies focused on various aspects of cancer secretome including, composition and identification of components externalized by malignant cells and by the components of tumor microenvironment. Areas covered: Here, we provide an overview of achievements in the proteomic analysis of the cancer secretome, elicited through the tumor-associated interstitial fluid recovered from malignant tissues ex vivo or the protein component of conditioned media obtained from cultured cancer cells in vitro. We summarize various bioinformatic tools and approaches and critically appraise their outcomes, focusing on problems and challenges that arise when applied for the analysis of cancer secretomic databases. Expert commentary: Recent achievements in the omics- analysis of structural and metabolic aspects of altered cancer secretome contribute greatly to the various hallmarks of cancer including the identification of clinically significant biomarkers and potential targets for therapeutic intervention.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteómica/métodos , Animales , Línea Celular Tumoral , Biología Computacional/métodos , Humanos
19.
ACS Appl Mater Interfaces ; 9(35): 29457-29468, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28799743

RESUMEN

Interstitial fluid pressure (IFP) in tumor is much higher than that in normal tissue, and it constitutes a great obstacle for the delivery of antitumor drugs, thus becoming a potential target for cancer therapy. In this study, cationic nanostructured lipid carriers (NLCs) were modified by low molecular weight gelatin to achieve the desirable reduction of tumor IFP and improve the drug delivery. In this way, the chemotherapy of formulations on tumor proliferation and pulmonary metastasis was further improved. The nanoparticles were used to load three drugs, docetaxel (DTX), quercetin (Qu), and imatinib (IMA), with high encapsulation efficiency of 89.54%, 96.45%, and 60.13%, respectively. GNP-DTX/Qu/IMA nanoparticles exhibited an enzyme-sensitive drug release behavior, and the release rate could be mediated by matrix metalloproteinases (MMP-9). Cellular uptake and MTT assays showed that the obtained GNP-DTX/Qu/IMA could be internalized into human breast 4T1 cells effectively and exhibited the strongest cytotoxicity. Moreover, GNP-DTX/Qu/IMA demonstrated obvious advantages in inducing apoptosis and mediating the expression of apoptosis-related proteins (Caspase 3, Caspase 9, and bcl-2). In the wound-healing assay, GNP-DTX/Qu/IMA exhibited evidently inhibition of cell migration. The benefits of tumor IFP reduction induced by GNP-DTX/Qu/IMA were further proved after a continuous administration to 4T1 tumor-bearing mice. Finally, in the in vivo antitumor assays, GNP-DTX/Qu/IMA displayed stronger antitumor efficiency as well as suppression on pulmonary metastasis. In conclusion, the GNP-DTX/Qu/IMA system might be a promising strategy for metastatic breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Animales , Antineoplásicos , Línea Celular Tumoral , Portadores de Fármacos , Líquido Extracelular , Gelatina , Humanos , Intestinos , Lípidos , Ratones , Nanopartículas , Presión , Taxoides
20.
Mol Oncol ; 11(2): 220-234, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28145100

RESUMEN

It has been hypothesized based on accumulated data that a class of small noncoding RNAs, termed microRNAs, are key factors in intercellular communication. Here, microRNAs present in interstitial breast tumor fluids have been analyzed to identify relevant markers for a diagnosis of breast cancer and to elucidate the cross-talk that exists among cells in a tumor microenvironment. Matched tumor interstitial fluid samples (TIF, n = 60), normal interstitial fluid samples (NIF, n = 51), corresponding tumor tissue specimens (n = 54), and serum samples (n = 27) were collected from patients with breast cancer, and detectable microRNAs were analyzed and compared. In addition, serum data from 32 patients with breast cancer and 22 healthy controls were obtained for a validation study. To identify potential serum biomarkers of breast cancer, first the microRNA profiles of TIF and NIF samples were compared. A total of 266 microRNAs were present at higher level in the TIF samples as compared to normal counterparts. Sixty-one of these microRNAs were present in > 75% of the serum samples and were subsequently tested in a validation set. Seven of the 61 microRNAs were associated with poor survival, while 23 were associated with the presence of immune cells and adipocytes. To our knowledge, these data demonstrate for the first time that profiling of microRNAs in TIF can identify novel biomarkers for the prognostic classification and detection of breast cancer. In addition, the present findings demonstrate that microRNAs may represent the cross-talk that occurs between tumor cells and their surrounding stroma.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Líquido Extracelular/metabolismo , MicroARNs/metabolismo , ARN Neoplásico/metabolismo , Supervivencia sin Enfermedad , Femenino , Humanos , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA