Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Protein Pept Lett ; 30(10): 854-867, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37921157

RESUMEN

BACKGROUND: It has been reported that activation of glutamate kainate receptor subunit 2 (GluK2) subunit-containing glutamate receptors and the following Fas ligand(FasL) up-regulation, caspase-3 activation, result in delayed apoptosis-like neuronal death in hippocampus CA1 subfield after cerebral ischemia and reperfusion. Nitric oxide-mediated S-nitrosylation might inhibit the procaspase activation, whereas denitrosylation might contribute to cleavage and activation of procaspases. OBJECTIVES: The study aimed to elucidate the molecular mechanisms underlying procaspase-3 denitrosylation and activation following kainic acid (KA)-induced excitotoxicity in rat hippocampus. METHODS: S-nitrosylation of procaspase-3 was detected by biotin-switch method. Activation of procaspase-3 was shown as cleavage of procaspase-3 detected by immunoblotting. FasL expression was detected by immunoblotting. Cresyl violets and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining were used to detect apoptosis-like neuronal death in rat hippocampal CA1 and CA3 subfields. RESULTS: KA led to the activation of procaspase-3 in a dose- and time-dependent manner, and the activation was inhibited by KA receptor antagonist NS102. Procaspase-3 was denitrosylated at 3 h after kainic acid administration, and the denitrosylation was reversed by SNP and GSNO. FasL ASODNs inhibited the procaspase-3 denitrosylation and activation. Moreover, thioredoxin reductase (TrxR) inhibitor auranofin prevented the denitrosylation and activation of procaspase-3 in rat hippocampal CA1 and CA3 subfields. NS102, FasL AS-ODNs, and auranofin reversed the KAinduced apoptosis and cell death in hippocampal CA1 and CA3 subfields. CONCLUSIONS: KA led to denitrosylation and activation of procaspase-3 via FasL and TrxR. Inhibition of procaspase-3 denitrosylation by auranofin, SNP, and GSNO played protective effects against KA-induced apoptosis-like neuronal death in rat hippocampal CA1 and CA3 subfields. These investigations revealed that the procaspase-3 undergoes an initial denitrosylation process before becoming activated, providing valuable insights into the underlying mechanisms and possible treatment of excitotoxicity.


Asunto(s)
Auranofina , Ácido Kaínico , Ratas , Animales , Ácido Kaínico/toxicidad , Ácido Kaínico/metabolismo , Caspasa 3/metabolismo , Auranofina/metabolismo , Auranofina/farmacología , Ratas Sprague-Dawley , Hipocampo/metabolismo
2.
Molecules ; 28(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36770971

RESUMEN

Cellular mesenchymal-epithelial transition factor (c-Met), an oncogenic transmembrane receptor tyrosine kinase (RTK), plays an essential role in cell proliferation during embryo development and liver regeneration. Thioredoxin reductase (TrxR) is overexpressed and constitutively active in most tumors closely related to cancer recurrence. Multi-target-directed ligands (MTDLs) strategy provides a logical approach to drug combinations and would adequately address the pathological complexity of cancer. In this work, we designed and synthesized a series of selenium-containing tepotinib derivatives by means of selenium-based bioisosteric modifications and evaluated their antiproliferative activity. Most of these selenium-containing hybrids exhibited potent dual inhibitory activity toward c-Met and TrxR. Among them, compound 8b was the most active, with an IC50 value of 10 nM against MHCC97H cells. Studies on the mechanism of action revealed that compound 8b triggered cell cycle arrest at the G1 phase and caused ROS accumulations by targeting TrxR, and these effects eventually led to cell apoptosis. These findings strongly suggest that compound 8b serves as a dual inhibitor of c-Met and TrxR, warranting further exploitation for cancer therapy.


Asunto(s)
Antineoplásicos , Selenio , Antineoplásicos/farmacología , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Selenio/farmacología , Piperidinas/farmacología , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales
3.
Pharmacol Res ; 177: 106113, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35124208

RESUMEN

A novel TrxR inhibitor Au-24 and its inhibitory ability to hepatocellular carcinoma in vitro and in vivo is reported herein. Au-24 can suppress HepG2 cells from proliferating by lowering mitochondrial membrane potential (MMP) and increasing reactive oxygen species (ROS) levels, resulting in oxidative stress, which causes DNA damage, autophagy, cell cycle arrest, and apoptosis. This compound can also affect the normal function of apoptosis, MAPK, PI3K/AKT/mTOR, NF-κB, STAT3 signaling pathways. In vivo experiments revealed that Au-24 inhibited HepG2 tumor growth more effectively than AA1 (chloro(triethylphosphine)gold(I)) by decreasing Ki67 and CD31 protein expression and promoting tumor cell apoptosis and necrosis lesions. As a result, Au-24 was found to be a promising candidate as a TrxR inhibitor for the treatment of hepatocellular carcinoma (HCC) in both in vivo and in vitro experiments.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Apoptosis , Carcinoma Hepatocelular/metabolismo , Proliferación Celular , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinasas , Especies Reactivas de Oxígeno/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo
4.
Free Radic Biol Med ; 146: 275-286, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31730934

RESUMEN

Chemoresistance and high incidence of relapse in acute myeloid leukemia (AML) patients are associated with thioredoxin (Trx) overexpression. Thus, targeting the Trx system has emerged as a promising approach to treating AML. Both arsenicals and azelaic acid (AZA) are thioredoxin reductase (TrxR) inhibitors and possess antileukemic effects. In this study, to exploit agents with higher potency and lower toxicity, we got some organic arsenicals and further synthesized a series of targeted compounds by binding AZA to organic arsenicals, and then screened the most effective one, N-(4-(1, 3, 2-dithiarsinan-2-yl) phenyl)-azelamide (A-Z2). A-Z2 showed a stronger inhibitory effect against TrxR activity and in AML cell lines than did AZA or arsenicals. Additionally, A-Z2 was less toxic to healthy cells compared with traditional chemotherapeutic drugs. A-Z2 induces apoptosis by collapsing of mitochondrial membrane potential, reducing ATP level, releasing of cytochrome c and TNF-α, activating of caspase 9, 8 and 3. Analysis of the mechanism revealed that A-Z2 activates the intrinsic apoptotic pathway by directly selectively targeting TrxR/Trx and indirectly inhibiting NF-κB. A-Z2's better efficacy and safety profile against arsenicals and azelaic acid were also evident in vivo. A-Z2 had better plasma stability and biological activity in rats. A-Z2-treated mice displayed significant symptom relief and prolonged survival in a patient-derived xenograft (PDX) AML model. Herein, our study provides a novel antitumor candidate and approach for treating AML.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Animales , Antineoplásicos/farmacología , Apoptosis , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Ratones , Ratas , Reductasa de Tiorredoxina-Disulfuro , Tiorredoxinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA